Connect with us

News

Blue Origin launches first suborbital tourists after six years and 15 test flights

Published

on

More than six years after New Shepard’s first test flight and nine years after a pad abort featuring a prototype of the rocket’s capsule, Blue Origin has launched its first crew of suborbital tourists.

Almost exclusively funded by Amazon CEO Jeff Bezos’ stock sales over more than 21 years of operations, Blue Origin has been working towards New Shepard’s first crewed launch for approximately a decade. Aside from a pad abort test of the rocket’s relatively simple ‘crew capsule’ in October 2012, New Shepard – purported to be fully reusable – has performed 15 uncrewed test flights since April 2015. At least according to Blue Origin, of those 15 tests, 14 were fully successful and 11 crossed the 100 km (~62 mi) Karman Line – a largely arbitrary line drawn between Earth’s atmosphere and space.

Six years and three months after New Shepard’s first flight, the rocket lifted off on its 16th suborbital mission and inaugural crewed launch. Along for the ride were Jeff Bezos himself, brother Mark Bezos, hedgefund multimillionaire Joes Daemen’s son Oliver Daemen, and trailblazing pilot and aviator Mary “Wally” Funk.

While New Shepard NS-16 reached an apogee of 107 km (66 mi) and a maximum speed of 2233 mph (1 km/s / Mach 2.9), less than 13% of the way to orbit, the mission did mark a number of “spaceflight” firsts insofar as its passengers did technically spend between 70 and 150 seconds in “space.” Notably, NS-16 passengers Oliver Daemon and Wally Funk are now respectively the youngest and oldest people in history to reach space. While Blue Origin hasn’t disclosed the value of his second-place bid, Oliver Daemen was technically a paying customer, making New Shepard the first rocket in history to launch a paying passenger on its first crewed flight.

Advertisement

In June, Blue Origin held a tone-deaf auction that ultimately resulted in a mystery buyer winning the first ticket on New Shepard at a jaw-dropping cost of $28 million – just shy of the $30M Richard Garriott paid to ride a Soyuz rocket to space, spend almost two weeks in orbit, and scream back to Earth at Mach 25. Bizarrely, the company still hasn’t revealed the winner, at no point mentioned that there would be runners-up, inexplicably swapped the mystery winner for Oliver Daemen with “scheduling issues” as the comical excuse, and has yet to reveal what Daemen paid for his ticket. In general, Blue Origin still refuses to provide any information about the price of seats on New Shepard.

Meanwhile, although Blue Origin did provide invite-only access to some media outlets and offered numerous interview opportunities with the NS-16 crew, there have been virtually zero chances for reporters and journalists to ask real questions. Beyond New Shepard, which raises dozens of questions on its own, Blue Origin’s orbital New Glenn rocket is years behind schedule and apparent issues with the BE-4 engine meant to power both it and the United Launch Alliance’s (ULA) Vulcan has also significantly delayed the latter rocket’s launch debut.

For the last several years, Vulcan and New Glenn were both aiming for a launch debut sometime in 2020. Both targets eventually slipped to 2021 and as of 2021, Vulcan is now expected to launch no earlier than early 2022 and New Glenn’s debut has slipped to “late 2022” – likely meaning 2023.

On its own, New Shepard has had one of the most bizarre development paths of any rocket in history. Despite virtually unlimited resources from Bezos’ average sale of billions of Amazon stock each year and the fact that New Shepard is a fully reusable rocket that demonstrated the ability to fly twice in ~60 days in 2016, Blue Origin has only launched the rocket 15 times in the 75 months before NS-16. The company has never once implied that New Shepard suffered major issues during any of its test flights, save for NS-1’s failed booster recovery (though Blue has generally glossed over or ignored that lone failure).

Advertisement

Somewhat coincidentally, New Shepard’s first test flight occurred just a few weeks before SpaceX attempted the first major test of a partially integrated Crew Dragon prototype, resulting in a successful pad abort test in May 2015. Despite several significant, documented delays, less than four years later, Crew Dragon aced an uncrewed orbital launch to the ISS and back to Earth. 14 months after Demo-1, SpaceX became the first private company in history to launch astronauts to orbit. Less than six months after that historic launch and four months after Crew Dragon returned two NASA astronauts to Earth, SpaceX launched its first operational four-astronaut mission to the ISS.

In the same period that Blue Origin completed five uncrewed New Shepard test flights, SpaceX launched Crew Dragon’s Demo-1, In-Flight Abort, Demo-2, Crew-1, and Crew-2 missions, carrying six astronauts to orbit and back and delivering another four to the ISS (where they still are). Not only did SpaceX also launch five Crew Dragons, but April 2021’s Crew-2 mission marked the first time in history that astronauts launched on a flight-proven liquid rocket booster and a flight-proven space capsule, beating Blue Origin to the punch despite the far greater challenges and risks posed by orbital spaceflight.

Put simply, it’s disappointing but not exactly surprising that Blue Origin continues to go to great lengths to avoid having to answer questions that haven’t been obviously vetted or preselected.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count

That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.

Published

on

Credit: @AdanGuajardo/X

Tesla already has the pieces in place for a full Robotaxi service that works regardless of passenger count, even if the backbone of the program is a small autonomous two-seater. 

That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.

Two-seat Cybercabs make perfect sense

During the Q&A portion of the call, Tesla Vice President of Vehicle Engineering Lars Moravy pointed out that more than 90% of vehicle miles traveled today involve two or fewer passengers. This, the executive noted, directly informed the design of the Cybercab. 

“Autonomy and Cybercab are going to change the global market size and mix quite significantly. I think that’s quite obvious. General transportation is going to be better served by autonomy as it will be safer and cheaper. Over 90% of vehicle miles traveled are with two or fewer passengers now. This is why we designed Cybercab that way,” Moravy said. 

Advertisement

Elon Musk expanded on the point, emphasizing that there is no fallback for Tesla’s bet on the Cybercab’s autonomous design. He reiterated that the autonomous two seater’s production is expected to start in April and noted that, over time, Tesla expects to produce far more Cybercabs than all of its other vehicles combined.

“Just to add to what Lars said there. The point that Lars made, which is that 90% of miles driven are with one or two passengers or one or two occupants, essentially, is a very important one… So this is clearly, there’s no fallback mechanism here. It’s like this car either drives itself or it does not drive… We would expect over time to make far more CyberCabs than all of our other vehicles combined. Given that 90% of distance driven or distance being distance traveled exactly, no longer driving, is one or two people,” Musk said. 

Tesla’s robotaxi lineup is already here

The more interesting takeaway from the Q4 and FY 2025 earnings call is the fact that Tesla does not need the Cybercab to serve every possible passenger scenario, simply because the company already has a functional Robotaxi model that scales by vehicle type.

The Cybercab will handle the bulk of the Robotaxi network’s trips, but for groups that need three or four seats, the Model Y fills that role. For higher-end or larger-family use cases, the extended-wheelbase Model Y L could cover five or six occupants, provided that Elon Musk greenlights the vehicle for North America. And for even larger groups or commercial transport, Tesla has already unveiled the Robovan, which could seat over ten people.

Advertisement

Rather than forcing one vehicle to satisfy every use case, Tesla’s approach mirrors how transportation works today. Different vehicles will be used for different needs, while unifying everything under a single autonomous software and fleet platform.

Continue Reading

News

Tesla Cybercab spotted with interesting charging solution, stimulating discussion

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Published

on

Credit: What's Inside | X

Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.

The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.

But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.

However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.

Wireless for Operation, Wired for Downtime

It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.

The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.

Tesla wireless charging patent revealed ahead of Robotaxi unveiling event

However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.

In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.

Induction Charging Challenges

Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.

While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.

Production Timing and Potential Challenges

With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.

It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.

In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.

Continue Reading

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Advertisement

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Advertisement
Continue Reading