Connect with us

News

Blue Origin launches first suborbital tourists after six years and 15 test flights

Published

on

More than six years after New Shepard’s first test flight and nine years after a pad abort featuring a prototype of the rocket’s capsule, Blue Origin has launched its first crew of suborbital tourists.

Almost exclusively funded by Amazon CEO Jeff Bezos’ stock sales over more than 21 years of operations, Blue Origin has been working towards New Shepard’s first crewed launch for approximately a decade. Aside from a pad abort test of the rocket’s relatively simple ‘crew capsule’ in October 2012, New Shepard – purported to be fully reusable – has performed 15 uncrewed test flights since April 2015. At least according to Blue Origin, of those 15 tests, 14 were fully successful and 11 crossed the 100 km (~62 mi) Karman Line – a largely arbitrary line drawn between Earth’s atmosphere and space.

Six years and three months after New Shepard’s first flight, the rocket lifted off on its 16th suborbital mission and inaugural crewed launch. Along for the ride were Jeff Bezos himself, brother Mark Bezos, hedgefund multimillionaire Joes Daemen’s son Oliver Daemen, and trailblazing pilot and aviator Mary “Wally” Funk.

While New Shepard NS-16 reached an apogee of 107 km (66 mi) and a maximum speed of 2233 mph (1 km/s / Mach 2.9), less than 13% of the way to orbit, the mission did mark a number of “spaceflight” firsts insofar as its passengers did technically spend between 70 and 150 seconds in “space.” Notably, NS-16 passengers Oliver Daemon and Wally Funk are now respectively the youngest and oldest people in history to reach space. While Blue Origin hasn’t disclosed the value of his second-place bid, Oliver Daemen was technically a paying customer, making New Shepard the first rocket in history to launch a paying passenger on its first crewed flight.

In June, Blue Origin held a tone-deaf auction that ultimately resulted in a mystery buyer winning the first ticket on New Shepard at a jaw-dropping cost of $28 million – just shy of the $30M Richard Garriott paid to ride a Soyuz rocket to space, spend almost two weeks in orbit, and scream back to Earth at Mach 25. Bizarrely, the company still hasn’t revealed the winner, at no point mentioned that there would be runners-up, inexplicably swapped the mystery winner for Oliver Daemen with “scheduling issues” as the comical excuse, and has yet to reveal what Daemen paid for his ticket. In general, Blue Origin still refuses to provide any information about the price of seats on New Shepard.

Advertisement
-->

Meanwhile, although Blue Origin did provide invite-only access to some media outlets and offered numerous interview opportunities with the NS-16 crew, there have been virtually zero chances for reporters and journalists to ask real questions. Beyond New Shepard, which raises dozens of questions on its own, Blue Origin’s orbital New Glenn rocket is years behind schedule and apparent issues with the BE-4 engine meant to power both it and the United Launch Alliance’s (ULA) Vulcan has also significantly delayed the latter rocket’s launch debut.

For the last several years, Vulcan and New Glenn were both aiming for a launch debut sometime in 2020. Both targets eventually slipped to 2021 and as of 2021, Vulcan is now expected to launch no earlier than early 2022 and New Glenn’s debut has slipped to “late 2022” – likely meaning 2023.

On its own, New Shepard has had one of the most bizarre development paths of any rocket in history. Despite virtually unlimited resources from Bezos’ average sale of billions of Amazon stock each year and the fact that New Shepard is a fully reusable rocket that demonstrated the ability to fly twice in ~60 days in 2016, Blue Origin has only launched the rocket 15 times in the 75 months before NS-16. The company has never once implied that New Shepard suffered major issues during any of its test flights, save for NS-1’s failed booster recovery (though Blue has generally glossed over or ignored that lone failure).

Somewhat coincidentally, New Shepard’s first test flight occurred just a few weeks before SpaceX attempted the first major test of a partially integrated Crew Dragon prototype, resulting in a successful pad abort test in May 2015. Despite several significant, documented delays, less than four years later, Crew Dragon aced an uncrewed orbital launch to the ISS and back to Earth. 14 months after Demo-1, SpaceX became the first private company in history to launch astronauts to orbit. Less than six months after that historic launch and four months after Crew Dragon returned two NASA astronauts to Earth, SpaceX launched its first operational four-astronaut mission to the ISS.

In the same period that Blue Origin completed five uncrewed New Shepard test flights, SpaceX launched Crew Dragon’s Demo-1, In-Flight Abort, Demo-2, Crew-1, and Crew-2 missions, carrying six astronauts to orbit and back and delivering another four to the ISS (where they still are). Not only did SpaceX also launch five Crew Dragons, but April 2021’s Crew-2 mission marked the first time in history that astronauts launched on a flight-proven liquid rocket booster and a flight-proven space capsule, beating Blue Origin to the punch despite the far greater challenges and risks posed by orbital spaceflight.

Advertisement
-->

Put simply, it’s disappointing but not exactly surprising that Blue Origin continues to go to great lengths to avoid having to answer questions that haven’t been obviously vetted or preselected.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla says its Texas lithium refinery is now operational and unlike anything in North America

Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.

Published

on

Credit: Tesla/YouTube

Tesla has confirmed that its Texas lithium refinery is now operational, marking a major milestone for the company’s U.S. battery supply chain. In a newly released video, Tesla staff detailed how the facility converts raw spodumene ore directly into battery-grade lithium hydroxide, making it the first refinery of its kind in North America.

Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.

A first-of-its-kind lithium refining process

In the video, Tesla staff at the Texas lithium refinery near Corpus Christi explained that the facility processes spodumene, a lithium-rich hard-rock ore, directly into battery-grade lithium hydroxide on site. The approach bypasses intermediate refining steps commonly used elsewhere in the industry.

According to the staff, spodumene is processed through kilns and cooling systems before undergoing alkaline leaching, purification, and crystallization. The resulting lithium hydroxide is suitable for use in batteries for energy storage and electric vehicles. Tesla employees noted that the process is simpler and less expensive than traditional refining methods.

Staff at the facility added that the process eliminates hazardous byproducts typically associated with lithium refining. “Our process is more sustainable than traditional methods and eliminates hazardous byproducts, and instead produces a co-product named anhydrite, used in concrete mixes,” an employee noted. 

Advertisement
-->

Musk calls the facility the largest lithium refinery in America

The refinery’s development timeline has been very impressive. The project moved from breaking ground in 2023 to integrated plant startup in 2025 by running feasibility studies, design, and construction in parallel. This compressed schedule enabled the fastest time-to-market for a refinery using this type of technology. This 2026, the facility has become operational. 

Elon Musk echoed the significance of the project in posts on X, stating that “the largest Lithium refinery in America is now operational.” In a separate comment, Musk described the site as “the most advanced lithium refinery in the world” and emphasized that the facility is “very clean.”

By bringing large-scale lithium hydroxide production online in Texas, Tesla is positioning itself to reduce reliance on foreign refining capacity while supporting its growth in battery and vehicle production. The refinery also complements Tesla’s nascent domestic battery manufacturing efforts, which could very well be a difference maker in the market.

Continue Reading

News

Tesla Optimus V3 gets early third-party feedback, and it’s eye-opening

Jason Calacanis’ remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot

Published

on

Credit: Tesla/YouTube

Angel investor and entrepreneur Jason Calacanis shared some insights after he got an early look at Tesla’s upcoming Optimus V3. His remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot.

Calacanis’ comments were shared publicly on X, and they were quite noteworthy.

The angel investor stated that he visited Tesla’s Optimus lab on a Sunday morning and observed that the place was buzzing with energy. The investor then shared a rare, shocking insight. As per Calacanis, Optimus V3 will be so revolutionary that people will probably not even remember that Tesla used to make cars in the future.

“I don’t want to name drop, but two Sundays ago, I went to Tesla with Elon and I went and visited the Optimus lab. There were a large number of people working on a Sunday at 10 a.m. and I saw Optimus 3. I can tell you now, nobody will remember that Tesla ever made a car,”  he noted.

The angel investor also reiterated the primary advantage of Optimus, and how it could effectively change the world.

Advertisement
-->

“They will only remember the Optimus and that he is going to make a billion of those, and it is going to be the most transformative technology product ever made in the history of humanity, because what LLMs are gonna enable those products to do is understand the world and then do things in the world that we don’t want to do. I believe there will be a 1:1 ratio of humans to Optimus, and I think he’s already won,” he said. 

While Calacanis’ comments were clearly opinion-driven, they stood out as among the first from a non-Tesla employee about Optimus V3. Considering his reaction to the humanoid robot, perhaps Elon Musk’s predictions for Optimus V3 might not be too far-fetched at all.

Tesla has been careful with its public messaging around Optimus V3’s development stage. Musk has previously stated on X that Optimus V3 has not yet been revealed publicly, clarifying that images and videos of the robot online still show Optimus V2 and V2.5, not the next-generation unit. As for Calacanis’ recent comments, however, Musk responded with a simple “Probably true” in a post on X.

Continue Reading

News

Tesla taps Samsung for 5G modems amid plans of Robotaxi ramp: report

The move signals Tesla’s growing focus on supply-chain diversification and next-generation communications as it prepares to scale its autonomous driving and robotaxi operations.

Published

on

Credit: Samsung Electronics

A report from South Korea has suggested that Samsung Electronics is set to begin supplying 5G automotive modems to Tesla. If accurate, this would mark a major expansion of the two companies’ partnership beyond AI chips and into vehicle connectivity. 

The move signals Tesla’s growing focus on supply-chain diversification and next-generation communications as it prepares to scale its autonomous driving and Robotaxi operations.

Samsung’s 5G modem

As per industry sources cited by TheElec, Samsung’s System LSI division has completed development of a dedicated automotive-grade 5G modem for Tesla. The 5G modem is reportedly in its testing phase. Initial supply is expected to begin in the first half of this year, with the first deployments planned for Tesla’s Robotaxi fleet in Texas. A wider rollout to consumer vehicles is expected to follow.

Development of the modem began in early 2024 and it required a separate engineering process from Samsung’s smartphone modems. Automotive modems must meet stricter durability standards, including resistance to extreme temperatures and vibration, along with reliability over a service life exceeding 10 years. Samsung will handle chip design internally, while a partner company would reportedly manage module integration.

The deal represents the first time Samsung has supplied Tesla with a 5G vehicle modem. Tesla has historically relied on Qualcomm for automotive connectivity, but the new agreement suggests that the electric vehicle maker may be putting in some serious effort into diversifying its suppliers as connectivity becomes more critical to autonomous driving.

Advertisement
-->

Deepening Tesla–Samsung ties

The modem supply builds on a rapidly expanding relationship between the two companies. Tesla previously selected Samsung’s foundry business to manufacture its next-generation AI6 chips, a deal valued at more than 22.7 trillion won and announced in mid-2025. Together, the AI chip and 5G modem agreements position Samsung as a key semiconductor partner for Tesla’s future vehicle platforms.

Industry observers have stated that the collaboration aligns with Tesla’s broader effort to reduce reliance on Chinese and Taiwanese suppliers. Geopolitical risk and long-term supply stability are believed to be driving the shift in no small part, particularly as Tesla prepares for large-scale Robotaxi deployment.

Stable, high-speed connectivity is essential for Tesla’s Full Self-Driving system, supporting real-time mapping, fleet management, and continuous software updates. By pairing in-vehicle AI computing with a new 5G modem supplier, Tesla appears to be tightening control over both its hardware stack and its global supply chain.

Continue Reading