Connect with us

News

Blue Origin scraps New Glenn recovery ship, finishes first ‘test tank’

As one Blue Origin plan heads for the scrapyard, another is finally coming to fruition. (Port of Pensacola - Benjamin Van Der Like; Blue Origin)

Published

on

After four years of halting work, Blue Origin has fully abandoned a transport ship it once intended to convert into a landing platform for its orbital-class New Glenn rocket.

Known as Stena Freighter at the time of sale, Blue Origin purchased the ship for an undisclosed sum – likely several million dollars – sometime in mid-2018. Aside from a flashy, December 2020 re-christening ceremony in which Blue Origin owner Jeff Bezos named the vessel Jacklyn after his late mother, the private aerospace company left the ship largely untouched in a Florida port. Small teams of workers would occasionally work on retrofitting the roll-on/roll-off cargo ship for a future life as a rocket recovery asset but made very little visible progress despite working on Jacklyn for several years.

Now, a few months after a Blue Origin spokesperson first acknowledged that the company was evaluating “different options” for New Glenn booster recovery, Jacklyn has left Florida’s Port of Pensacola for the Texan Port of Brownsville, where documents show that the ship will be scrapped.

According to an unconfirmed report, Blue Origin may ultimately use the same contractors as SpaceX to turn existing barges into ocean-going rocket-landing platforms. Blue Origin had hoped that a large, keeled ship would allow it to launch New Glenn and still recover its expensive booster even if seas were stormy downrange. However, after 107 successful SpaceX Falcon booster landings on flat-bottomed barges that are exceptionally sensitive to wave conditions, just a tiny fraction of launches have been delayed by the ocean. Further, SpaceX has only lost one booster to waves, and it solved that problem by developing a relatively cheap robot. With the benefit of hindsight, it’s not hard to see why Blue Origin changed its mind.

Much like SpaceX’s next-generation Starship rocket, Blue Origin began work on its semi-reusable New Glenn rocket in the early 2010s. Jeff Bezos publicly revealed New Glenn just a few weeks before CEO Elon Musk’s long-planned September 2016 reveal of SpaceX’s next rocket, then known as the Interplanetary Transport System (ITS). Both were massive, meant to be powered by huge new methane/oxygen-fueled engines, and designed from the ground up with some degree of reusability in mind.

Advertisement
-->

But with fairly different designs and wildly different development philosophies, the paths of Blue Origin and SpaceX have only gotten further apart over the last six years. SpaceX thoroughly redesigned its next-generation rocket multiple times before throwing out a large portion of that prior work and settling on an unexpected stainless steel variant that CEO Elon Musk christened Starship in late 2018. Further differentiating the companies, SpaceX began work on steel prototypes almost immediately and successfully built and flew a scrappy pathfinder – powered by an early version of the same Raptor engine meant for Starship – less than a year later.

SpaceX then improvised a factory out of a series of tents and began churning out and testing dozens of more refined prototypes, seven of which would go on to perform flight tests between August 2020 and May 2021. SpaceX’s last test flight ended with a full-size steel Starship prototype successfully landing after launching to an altitude of 10 kilometers (~6.2 mi). Testing slowed considerably after that success but SpaceX appears to have begun ramping up again as it begins to test a Starship (S24) and Super Heavy booster prototype (B7) that have a shot at supporting the rocket’s first orbital launch attempt.

That orbital launch debut has been more or less continuously delayed for years and is about 20 months behind a tentative schedule Musk first sketched out (albeit for a drastically different rocket design) in 2016. Technically, the same is true for Blue Origin, which also said that it intended to debut New Glenn as early as 2020. However, while SpaceX can point to the instability of Starship’s design before 2019 as a fairly reasonable excuse for delays, the general characteristics of New Glenn’s design appear to be virtually unchanged despite its many delays. The smaller rocket – 7m (23 ft) wide and 98m (322 ft) tall to Starship’s 9m (30 ft) width and ~119m (~390 ft) height – will still use traditional aluminum alloys for most of its structures, will be powered by seven BE-4 engines, will land on several deployable legs, will have an expendable upper stage powered by two BE-3U engines, and will be topped with a large composite payload fairing.

Blue Origin canceled plans for a smaller interim fairing, abandoned plans to land the booster on a moving ship, and tweaked the booster’s landing legs and a few other attributes, but New Glenn is otherwise (visibly) unchanged from its 2016 reveal. Ultimately, that makes it even stranger that Blue Origin has done practically zero integrated testing of any major New Glenn components. Only in 2022 did the company finally complete and test a New Glenn payload fairing. Blue may have also built and tested a partial booster interstage, which the New Glenn upper stage will attach and deploy from.

An early pathfinder New Glenn fairing half. (Blue Origin)

But the true star of the show, at long last, is an apparent full-scale prototype of New Glenn’s upper stage. At minimum, Blue Origin’s first ‘test tank’ (using SpaceX parlance) should allow the company to finally verify the performance of New Glenn’s aluminum tank barrel sections and domes under cryogenic (ultra-cold) conditions. It’s unclear how (or if) Blue Origin intends to complete integrated static-fire testing of New Glenn’s upper stage before the rocket’s first launch, but it’s possible that the tank it finally delivered was designed to support testing with and without engines.

For the first time ever, Blue Origin has a significant amount of New Glenn hardware to show off, ranging from an insulated aluminum test tank similar to New Glenn’s upper stage, a good number of domes and barrel sections, and even a booster engine and leg section.

Nonetheless, Blue Origin hasn’t specified what it actually plans to do with its first New Glenn test tank and it’s even less clear why it has taken the company so long to complete one. While difficult, the methods Blue Origin is using to build New Glenn’s primary structures are about as standard as they get for modern rockets. Blue Origin itself even uses the same tech to build its smaller New Shepard rockets. So does SpaceX, ULA, Boeing, Arianespace, and virtually every other manufacturer of medium-to-large rockets, including NASA’s Space Launch System (SLS) core stage, which is wider than New Glenn.

The results of those challenges (managerial, technical, or otherwise) are clear: Blue Origin is nowhere close to debuting its next-generation rocket while competitors like Arianespace and ULA are tracking towards H1 2023 debuts of their Ariane 6 and Vulcan rockets. SpaceX, who is pursuing full reusability and really only settled on the design of its larger rocket in 2019, could even be ready to attempt an orbital-class launch with Starship before the end of 2022.

Advertisement
-->

Still, the long-awaited beginning of hardware-rich New Glenn development appears to have finally arrived, and it’s possible that Blue Origin’s first orbital-class rocket could finally start picking up momentum towards its launch debut.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla dominates in the UK with Model Y and Model 3 leading the way

Published

on

Credit: Tesla China

Tesla is dominating in the United Kingdom so far through 2025, and with about two weeks left in the year, the Model Y and Model 3 are leading the way.

The Model Y and Model 3 are the two best-selling electric vehicles in the United Kingdom, which is comprised of England, Scotland, Wales, and Northern Ireland, and it’s not particularly close.

According to data gathered byΒ EU-EVs, the Model Y is sitting at 18,890 units for the year, while the Model 3 is slightly behind with 16,361 sales for the year so far.

The next best-selling EV is the Audi Q4 e-tron at 10,287 units, lagging significantly behind but ahead of other models like the BMW i4 and the Audi Q6 e-tron.

The Model Y has tasted significant success in the global market, but it has dominated in large markets like Europe and the United States.

For years, it’s been a car that has fit the bill of exactly what consumers need: a perfect combination of luxury, space, and sustainability.

Both vehicles are going to see decreases in sales compared to 2024; the Model Y was the best-selling car last year, but it sold 32,610 units in the UK. Meanwhile, the Model 3 had reached 17,272 units, which will keep it right on par with last year.

Tesla announces major milestone in the United Kingdom

Tesla sold 50,090 units in the market last year, and it’s about 8,000 units shy of last year’s pace. It also had a stronger market share last year with 13.2 percent of the sales in the market. With two weeks left in 2025, Tesla has a 9.6 percent market share, leading Volkswagen with 8 percent.

The company likely felt some impact from CEO Elon Musk’s involvement with the Trump administration and, more specifically, his role with DOGE. However, it is worth mentioning that some months saw stronger consumer demand than others. For example, sales were up over 20 percent in February. A 14 percent increase followed this in June.

Continue Reading

News

Tesla Insurance officially expands to new U.S. state

Tesla’s in-house Insurance program first launched back in late 2019, offering a new way to insure the vehicles that was potentially less expensive and could alleviate a lot of the issues people had with claims, as the company could assess and repair the damage itself.

Published

on

Credit: Tesla Insurance

Tesla Insurance has officially expanded to a new U.S. state, its thirteenth since its launch in 2019.

Tesla has confirmed that its in-house Insurance program has officially made its way to Florida, just two months after the company filed to update its Private Passenger Auto program in the state. It had tried to offer its insurance program to drivers in the state back in 2022, but its launch did not happen.

Instead, Tesla refiled the paperwork back in mid-October, which essentially was the move toward initiating the offering this month.

Tesla’s in-house Insurance program first launched back in late 2019, offering a new way to insure the vehicles that was potentially less expensive and could alleviate a lot of the issues people had with claims, as the company could assess and repair the damage itself.

It has expanded to new states since 2019, but Florida presents a particularly interesting challenge for Tesla, as the company’s entry into the state is particularly noteworthy given its unique insurance landscape, characterized by high premiums due to frequent natural disasters, dense traffic, and a no-fault system.

Tesla partners with Lemonade for new insurance program

Annual average premiums for Florida drivers hover around $4,000 per year, well above the national average. Tesla’s insurance program could disrupt this, especially for EV enthusiasts. The state’s growing EV adoption, fueled by incentives and infrastructure development, aligns perfectly with Tesla’s ecosystem.

Moreover, there are more ways to have cars repaired, and features like comprehensive coverage for battery damage and roadside assistance tailored to EVs address those common painpoints that owners have.

However, there are some challenges that still remain. Florida’s susceptibility to hurricanes raises questions about how Tesla will handle claims during disasters.

Looking ahead, Tesla’s expansion of its insurance program signals the company’s ambition to continue vertically integrating its services, including coverage of its vehicles. Reducing dependency on third-party insurers only makes things simpler for the company’s automotive division, as well as for its customers.

Continue Reading

News

Tesla Full Self-Driving gets sparkling review from South Korean politician

“Having already ridden in an unmanned robotaxi, the novelty wasn’t as strong for me, but it drives just as well as most people do. It already feels like a completed technology, which gives me a lot to think about.”

Published

on

Credit: Soyoung Lee | X

Tesla Full Self-Driving got its first sparkling review from South Korean politician Lee So-young, a member of the country’s National Assembly, earlier this week.

Lee is a member of the Strategy and Finance Committee in South Korea and is a proponent of sustainable technologies and their applications in both residential and commercial settings. For the first time, Lee was able to utilize Tesla’s Full Self-Driving technology as it launched in the country in late November.

Her thoughts on the suite were complimentary to the suite, stating that “it drives just as well as most people do,” and that “it already feels like a completed technology.”

Her translated post says:

“Finally, today I got to experience Tesla FSD in Seoul. Thanks to the Model S sponsored by JiDal Papa^^, I’m truly grateful to Papa. The route was from the National Assembly -> Mangwon Market -> Hongik University -> back to the National Assembly. Having already ridden in an unmanned robotaxi, the novelty wasn’t as strong for me, but it drives just as well as most people do. It already feels like a completed technology, which gives me a lot to think about. Once it actually spreads into widespread use, I feel like our daily lives are going to change a lot. Even I, with my license gathering dust in a drawer, don’t see much reason to learn to drive a manual anymore.”

Tesla Full Self-Driving officially landed in South Korea in late November, with the initial launch being one of Tesla’s most recent, v14.1.4.

It marked the seventh country in which Tesla was able to enable the driver assistance suite, following the United States, Puerto Rico, Canada, China, Mexico, Australia, and New Zealand.

It is important to see politicians and figures in power try new technologies, especially ones that are widely popular in other regions of the world and could potentially revolutionize how people travel globally.

Continue Reading