Connect with us

News

Blue Origin scraps New Glenn recovery ship, finishes first ‘test tank’

As one Blue Origin plan heads for the scrapyard, another is finally coming to fruition. (Port of Pensacola - Benjamin Van Der Like; Blue Origin)

Published

on

After four years of halting work, Blue Origin has fully abandoned a transport ship it once intended to convert into a landing platform for its orbital-class New Glenn rocket.

Known as Stena Freighter at the time of sale, Blue Origin purchased the ship for an undisclosed sum – likely several million dollars – sometime in mid-2018. Aside from a flashy, December 2020 re-christening ceremony in which Blue Origin owner Jeff Bezos named the vessel Jacklyn after his late mother, the private aerospace company left the ship largely untouched in a Florida port. Small teams of workers would occasionally work on retrofitting the roll-on/roll-off cargo ship for a future life as a rocket recovery asset but made very little visible progress despite working on Jacklyn for several years.

Now, a few months after a Blue Origin spokesperson first acknowledged that the company was evaluating “different options” for New Glenn booster recovery, Jacklyn has left Florida’s Port of Pensacola for the Texan Port of Brownsville, where documents show that the ship will be scrapped.

According to an unconfirmed report, Blue Origin may ultimately use the same contractors as SpaceX to turn existing barges into ocean-going rocket-landing platforms. Blue Origin had hoped that a large, keeled ship would allow it to launch New Glenn and still recover its expensive booster even if seas were stormy downrange. However, after 107 successful SpaceX Falcon booster landings on flat-bottomed barges that are exceptionally sensitive to wave conditions, just a tiny fraction of launches have been delayed by the ocean. Further, SpaceX has only lost one booster to waves, and it solved that problem by developing a relatively cheap robot. With the benefit of hindsight, it’s not hard to see why Blue Origin changed its mind.

Much like SpaceX’s next-generation Starship rocket, Blue Origin began work on its semi-reusable New Glenn rocket in the early 2010s. Jeff Bezos publicly revealed New Glenn just a few weeks before CEO Elon Musk’s long-planned September 2016 reveal of SpaceX’s next rocket, then known as the Interplanetary Transport System (ITS). Both were massive, meant to be powered by huge new methane/oxygen-fueled engines, and designed from the ground up with some degree of reusability in mind.

Advertisement

But with fairly different designs and wildly different development philosophies, the paths of Blue Origin and SpaceX have only gotten further apart over the last six years. SpaceX thoroughly redesigned its next-generation rocket multiple times before throwing out a large portion of that prior work and settling on an unexpected stainless steel variant that CEO Elon Musk christened Starship in late 2018. Further differentiating the companies, SpaceX began work on steel prototypes almost immediately and successfully built and flew a scrappy pathfinder – powered by an early version of the same Raptor engine meant for Starship – less than a year later.

SpaceX then improvised a factory out of a series of tents and began churning out and testing dozens of more refined prototypes, seven of which would go on to perform flight tests between August 2020 and May 2021. SpaceX’s last test flight ended with a full-size steel Starship prototype successfully landing after launching to an altitude of 10 kilometers (~6.2 mi). Testing slowed considerably after that success but SpaceX appears to have begun ramping up again as it begins to test a Starship (S24) and Super Heavy booster prototype (B7) that have a shot at supporting the rocket’s first orbital launch attempt.

That orbital launch debut has been more or less continuously delayed for years and is about 20 months behind a tentative schedule Musk first sketched out (albeit for a drastically different rocket design) in 2016. Technically, the same is true for Blue Origin, which also said that it intended to debut New Glenn as early as 2020. However, while SpaceX can point to the instability of Starship’s design before 2019 as a fairly reasonable excuse for delays, the general characteristics of New Glenn’s design appear to be virtually unchanged despite its many delays. The smaller rocket – 7m (23 ft) wide and 98m (322 ft) tall to Starship’s 9m (30 ft) width and ~119m (~390 ft) height – will still use traditional aluminum alloys for most of its structures, will be powered by seven BE-4 engines, will land on several deployable legs, will have an expendable upper stage powered by two BE-3U engines, and will be topped with a large composite payload fairing.

Blue Origin canceled plans for a smaller interim fairing, abandoned plans to land the booster on a moving ship, and tweaked the booster’s landing legs and a few other attributes, but New Glenn is otherwise (visibly) unchanged from its 2016 reveal. Ultimately, that makes it even stranger that Blue Origin has done practically zero integrated testing of any major New Glenn components. Only in 2022 did the company finally complete and test a New Glenn payload fairing. Blue may have also built and tested a partial booster interstage, which the New Glenn upper stage will attach and deploy from.

An early pathfinder New Glenn fairing half. (Blue Origin)

But the true star of the show, at long last, is an apparent full-scale prototype of New Glenn’s upper stage. At minimum, Blue Origin’s first ‘test tank’ (using SpaceX parlance) should allow the company to finally verify the performance of New Glenn’s aluminum tank barrel sections and domes under cryogenic (ultra-cold) conditions. It’s unclear how (or if) Blue Origin intends to complete integrated static-fire testing of New Glenn’s upper stage before the rocket’s first launch, but it’s possible that the tank it finally delivered was designed to support testing with and without engines.

For the first time ever, Blue Origin has a significant amount of New Glenn hardware to show off, ranging from an insulated aluminum test tank similar to New Glenn’s upper stage, a good number of domes and barrel sections, and even a booster engine and leg section.

Nonetheless, Blue Origin hasn’t specified what it actually plans to do with its first New Glenn test tank and it’s even less clear why it has taken the company so long to complete one. While difficult, the methods Blue Origin is using to build New Glenn’s primary structures are about as standard as they get for modern rockets. Blue Origin itself even uses the same tech to build its smaller New Shepard rockets. So does SpaceX, ULA, Boeing, Arianespace, and virtually every other manufacturer of medium-to-large rockets, including NASA’s Space Launch System (SLS) core stage, which is wider than New Glenn.

The results of those challenges (managerial, technical, or otherwise) are clear: Blue Origin is nowhere close to debuting its next-generation rocket while competitors like Arianespace and ULA are tracking towards H1 2023 debuts of their Ariane 6 and Vulcan rockets. SpaceX, who is pursuing full reusability and really only settled on the design of its larger rocket in 2019, could even be ready to attempt an orbital-class launch with Starship before the end of 2022.

Advertisement

Still, the long-awaited beginning of hardware-rich New Glenn development appears to have finally arrived, and it’s possible that Blue Origin’s first orbital-class rocket could finally start picking up momentum towards its launch debut.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla lands regulatory green light for Robotaxi testing in new state

This will be the third state in total where Tesla is operating Robotaxi, following Austin and California.

Published

on

Credit: Tesla

Tesla has landed a regulatory green light to test its Robotaxi platform in a new state, less than three months after the ride-hailing service launched in Texas.

Tesla first launched its driverless Robotaxi suite in Austin, Texas, back on June 22. Initially offering rides to a small group of people, Tesla kept things limited, but this was not to be the mentality for very long.

It continued to expand the rider population, the service area, and the vehicle fleet in Austin.

The company also launched rides in the Bay Area, but it does use a person in the driver’s seat to maintain safety. In Austin, the “Safety Monitor” is present in the passenger’s seat during local rides, and in the driver’s seat for routes that involve highway driving.

Tesla is currently testing the Robotaxi platform in other states. We reported that it was testing in Tempe, Arizona, as validation vehicles are traveling around the city in preparation for Robotaxi.

Tesla looks to make a big splash with Robotaxi in a new market

Tesla is also hoping to launch in Florida and New York, as job postings have shown the company’s intention to operate there.

However, it appears it will launch in Nevada before those states, as the company submitted its application to obtain a Testing Registry certification on September 3. It was processed by the state’s Department of Motor Vehicles Office of Business Licensing on September 10.

It will then need to self-certify for operations, essentially meaning they will need to comply with various state requirements.

This will be the third state in total where Tesla is operating Robotaxi, following Austin and California.

CEO Elon Musk has stated that he believes Robotaxi will be available to at least half of the U.S. population by the end of the year. Geographically, Tesla will need to make incredible strides over the final four months of the year to achieve this.

Continue Reading

News

Tesla is improving this critical feature in older vehicles

Published

on

Credit: Tesla

Tesla is set to improve a critical feature that has not been present in older vehicles with a new update.

Tesla vehicles feature a comprehensive suite of driver assistance features, some of which aid in driving itself, while others support the vehicle’s surroundings.

One of those features is that of Driver Visualization, and with the rollout of a new update, owners of Intel-based Tesla vehicles are receiving an upgrade that will come with a simple software update.

Tesla plans to use Unreal Engine for driver visualization with crazy upgrade

The update will provide new visualizations while Intel-based vehicles are in reverse, a feature that was not previously available, but will be with Software Update 2025.32.2.

The improvement was spotted by Not a Tesla App via TheBeatYT_evil:

Previously, vehicles Tesla built were equipped with Intel-based processors, but newer cars feature the AMD chip, which is capable of rendering these visualizations as they happen. They were capable of visualizations when driving forward, but not in reverse, which is what this change resolves.

It is a good sign for those with Intel-based vehicles, as Tesla seems to be paying attention to what those cars are not capable of and improving them.

This was an undocumented improvement associated with this particular update, so you will not find any mention of it in the release notes that Tesla distributes with each update.

Continue Reading

News

Tesla looks to make a big splash with Robotaxi in a new market

Tesla has been transparent that it is prioritizing safety, but it believes it can expand to basically any geographical location within the United States and find success with its Robotaxi suite. CEO Elon Musk said it could be available to half of the U.S. population by the end of the year.

Published

on

Credit: Joe Tegtmeyer | X

Tesla is looking to make a big splash with Robotaxi in a new market, as the company was spotted testing validation vehicles in one region where it has not yet launched its ride-hailing service.

After launching Robotaxi in Austin in late June, Tesla followed up with a relatively quick expansion to the Bay Area of California. Both service areas are operating with a geofence that is expansive: In Texas, it is 173 square miles, while in the Bay Area, it is roughly 400 square miles.

Tesla has been transparent that it is prioritizing safety, but it believes it can expand to basically any geographical location within the United States and find success with its Robotaxi suite. CEO Elon Musk said it could be available to half of the U.S. population by the end of the year.

There have been plenty of reports out there that have speculated as to where Tesla would land next to test Robotaxi, and Nevada, Florida, Arizona, and New York have all been in the realm of possibility. These regions will need to approve Tesla for regulatory purposes before Robotaxi can officially operate.

Tesla is still testing and performing validation in several regions, and in Tempe, Arizona, things are moving forward as a Model Y with a LiDAR rig was spotted performing ground truth for the platform:

With the LiDAR unit, many followers of the self-driving and autonomy space might wonder why Tesla uses these apparatuses during validation, especially considering the company’s stance and vision-based approach.

LiDAR is used for “ground truth,” which is basically a solidification or confirmation of what the cameras on the car are seeing. It is a great way to essentially confirm the accuracy of the vision-based suite, and will not be used on Robotaxi units used within the ride-hailing suite.

The Robotaxi platform was made available to the public earlier this month, as Tesla launched its app for iOS users.

Tesla Robotaxi app download rate demolishes Uber, Waymo all-time highs

Downloading the app allows you to join a waitlist, giving you the opportunity to utilize and test the Robotaxi platform in either Austin or the Bay Area.

Continue Reading

Trending