News
Elon Musk's Boring Company quietly deploys its custom-designed tunneling machine
As it turns out, Elon Musk’s tunneling startup, The Boring Company, has just completed and perhaps even deployed its custom-designed tunnel boring machine. The new digger features several innovations, and it could very well accelerate Musk’s vision of ultra-high-speed tunnels transporting vehicles and people through a vast network of tunnels underground.
The brief announcement was shared by the official Boring Company Twitter handle. The post was simple, showing a group of employees smiling in front of a tunnel boring machine that seems poised to start digging. In the tweet’s description, the startup posted the words “Prufrock is alive.”
This could very well be the biggest news to come out from the Boring Company since Elon Musk and TBC Head Steve Davis held an information session about the tunneling startup and its technologies at the Leo Baeck Temple in Los Angeles, CA back in May 2018. This is because unlike traditional tunnel boring machines (TBM), Prufrock is custom designed by The Boring Company, and it is expected to be capable of digging far quicker than its conventional counterparts.
The Boring Company started with Godot, a traditional boring machine that pretty much functions like a regular TBM. Godot is believed to be the boring machine that created the Hawthorne test tunnel, and while it works just as well as a TBM could, it is also immensely slow. Following Godot, the Boring Company designed Line-Storm, a TBM that is essentially a heavily modified conventional boring machine. In terms of speed, Line-Storm is capable of at least digging twice as fast as a traditional TBM like Godot.
But Godot and Line-Storm are just the beginning. During The Boring Company’s information session, Elon Musk and Steve Davis talked about a third tunneling machine. This machine, called Prufrock, is entirely designed by the startup, and it is expected to dig about 10-15 times faster than traditional boring machines like Godot. That’s a notable improvement over conventional diggers, and it has the potential to revolutionize tunneling technology in one fell swoop.
Elon Musk described each of the Boring Company’s TBMs as follows.
“Godot, which is the name of the first machine, is a conventional tunnel boring machine… So going from Godot to Line-Storm, Line-Storm is a highly modified boring machine, but it’s essentially a hybrid between a conventional boring machine and Prufrock, which is the fully Boring Company-designed machine. So Prufrock, that will be quite a radical change. Prufrock will be about ten times, aspirationally 15 times faster than current boring machines. I think very likely ten times.”
The Boring Company is involved in several projects, from the Dugout Loop in CA to the Las Vegas Convention Center tunnel in Nevada. Among these, the LVCC loop seems to be the most active, though the startup has not announced which of its machines had been deployed on the site. Considering that the TBM managed to complete the first of its two tunnels already, perhaps the machine digging under Las Vegas today is Line-Storm. As for Prufrock, the project where it will be deployed for the first time will likely be incredibly lucky.
The Boring Company’s potential disruption, after all, largely depends on how fast it could construct tunnels in a safe and efficient way. As noted by Elon Musk, this has a lot to do with the speed of TBMs themselves, as regular diggers move at a fraction of a snail’s pace. If The Boring Machine could at least match the speed of a snail, then a transport tunnel’s turnaround time would be drastically lower. This, of course, opens the doors to more tunnels being built, effectively ushering in Elon Musk’s vision of an ultra high-speed, underground future.
News
Tesla Cybercab sighting confirms one highly requested feature
The feature will likely allow the Cybercab to continue operating even in conditions when its cameras could be covered with dust, mud, or road grime.
A recent sighting of Tesla’s Cybercab prototype in Chicago appears to confirm a long-requested feature for the autonomous two-seater.
The feature will likely allow the Cybercab to continue operating even in conditions when its cameras could be covered with dust, mud, or road grime.
The Cybercab’s camera washer
The Cybercab prototype in question was sighted in Chicago, and its image was shared widely on social media. While the autonomous two-seater itself was visibly dirty, its rear camera area stood out as noticeably cleaner than the rest of the car. Traces of water were also visible on the trunk. This suggested that the Cybercab is equipped with a rear camera washer.
As noted by Model Y owner and industry watcher Sawyer Merritt, a rear camera washer is a feature many Tesla owners have requested for years, particularly in snowy or wet regions where camera obstruction can affect visibility and the performance of systems like Full Self-Driving (FSD).
While only the rear camera washer was clearly visible, the sighting raises the possibility that Tesla may equip the Cybercab’s other external cameras with similar cleaning systems. Given the vehicle’s fully autonomous design, redundant visibility safeguards would be a logical inclusion.
The Cybercab in Tesla’s autonomous world
The Cybercab is Tesla’s first purpose-built autonomous ride-hailing vehicle, and it is expected to enter production later this year. The vehicle was unveiled in October 2024 at the “We, Robot” event in Los Angeles, and it is expected to be a major growth driver for Tesla as it continues its transition toward an AI- and robotics-focused company. The Cybercab will not include a steering wheel or pedals and is intended to carry one or two passengers per trip, a decision Tesla says reflects real-world ride-hailing usage data.
The Cybercab is also expected to feature in-vehicle entertainment through its center touchscreen, wireless charging, and other rider-focused amenities. Musk has also hinted that the vehicle includes far more innovation than is immediately apparent, stating on X that “there is so much to this car that is not obvious on the surface.”
News
Tesla seen as early winner as Canada reopens door to China-made EVs
Tesla had already prepared for Chinese exports to Canada in 2023 by equipping its Shanghai Gigafactory to produce a Canada-specific version of the Model Y.
Tesla seems poised to be an early beneficiary of Canada’s decision to reopen imports of Chinese-made electric vehicles, following the removal of a 100% tariff that halted shipments last year.
Thanks to Giga Shanghai’s capability to produce Canadian-spec vehicles, it might only be a matter of time before Tesla is able to export vehicles to Canada from China once more.
Under the new U.S.–Canada trade agreement, Canada will allow up to 49,000 vehicles per year to be imported from China at a 6.1% tariff, with the quota potentially rising to 70,000 units within five years, according to Prime Minister Mark Carney.
Half of the initial quota is reserved for vehicles priced under CAD 35,000, a threshold above current Tesla models, though the electric vehicle maker could still benefit from the rule change, as noted in a Reuters report.
Tesla had already prepared for Chinese exports to Canada in 2023 by equipping its Shanghai Gigafactory to produce a Canada-specific version of the Model Y. That year, Tesla began shipping vehicles from Shanghai to Canada, contributing to a sharp 460% year-over-year increase in China-built vehicle imports through Vancouver.
When Ottawa imposed a 100% tariff in 2024, however, Tesla halted those shipments and shifted Canadian supply to its U.S. and Berlin factories. With tariffs now reduced, Tesla could quickly resume China-to-Canada exports.
Beyond manufacturing flexibility, Tesla could also benefit from its established retail presence in Canada. The automaker operates 39 stores across Canada, while Chinese brands like BYD and Nio have yet to enter the Canadian market directly. Tesla’s relatively small lineup, which is comprised of four core models plus the Cybertruck, allows it to move faster on marketing and logistics than competitors with broader portfolios.
Elon Musk
Tesla confirms that work on Dojo 3 has officially resumed
“Now that the AI5 chip design is in good shape, Tesla will restart work on Dojo 3,” Elon Musk wrote in a post on X.
Tesla has restarted work on its Dojo 3 initiative, its in-house AI training supercomputer, now that its AI5 chip design has reached a stable stage.
Tesla CEO Elon Musk confirmed the update in a recent post on X.
Tesla’s Dojo 3 initiative restarted
In a post on X, Musk said that with the AI5 chip design now “in good shape,” Tesla will resume work on Dojo 3. He added that Tesla is hiring engineers interested in working on what he expects will become the highest-volume AI chips in the world.
“Now that the AI5 chip design is in good shape, Tesla will restart work on Dojo3. If you’re interested in working on what will be the highest volume chips in the world, send a note to AI_Chips@Tesla.com with 3 bullet points on the toughest technical problems you’ve solved,” Musk wrote in his post on X.
Musk’s comment followed a series of recent posts outlining Tesla’s broader AI chip roadmap. In another update, he stated that Tesla’s AI4 chip alone would achieve self-driving safety levels well above human drivers, AI5 would make vehicles “almost perfect” while significantly enhancing Optimus, and AI6 would be focused on Optimus and data center applications.
Musk then highlighted that AI7/Dojo 3 will be designed to support space-based AI compute.
Tesla’s AI roadmap
Musk’s latest comments helped resolve some confusion that emerged last year about Project Dojo’s future. At the time, Musk stated on X that Tesla was stepping back from Dojo because it did not make sense to split resources across multiple AI chip architectures.
He suggested that clustering large numbers of Tesla AI5 and AI6 chips for training could effectively serve the same purpose as a dedicated Dojo successor. “In a supercomputer cluster, it would make sense to put many AI5/AI6 chips on a board, whether for inference or training, simply to reduce network cabling complexity & cost by a few orders of magnitude,” Musk wrote at the time.
Musk later reinforced that idea by responding positively to an X post stating that Tesla’s AI6 chip would effectively be the new Dojo. Considering his recent updates on X, however, it appears that Tesla will be using AI7, not AI6, as its dedicated Dojo successor. The CEO did state that Tesla’s AI7, AI8, and AI9 chips will be developed in short, nine-month cycles, so Dojo’s deployment might actually be sooner than expected.