News
Elon Musk’s Neuralink brain-machine interface is turning sci-fi into reality
Besides giving the world the option to switch to Tesla emissions-free electric cars and hopes of sending humans to Mars and beyond, Elon Musk also dreams of giving humans symbiosis with artificial intelligence through an implantable brain-machine interface created by Neuralink, a company he founded in 2016.
Neuralink is working on improving the basic structures of high-density Utah Array, a tiny chip that has become the industry benchmark for recording large populations of neurons. Dr. Richard Norman from the University of Utah invented the chip in 1997, which acts as an ultra-thin, flexible, and biocompatible polymer that connects the human brain to a tiny chip. During an event last year, Neurallink explained that the implant can be placed behind the ear and can interpret brain signals. Musk’s neural tech company has also invented a robot that can sew the implant to the brain with better precision than any human surgeon.
Wait until you see the next version vs what was presented last year. It’s *awesome*.
— Elon Musk (@elonmusk) February 3, 2020
So far, the brain-machine interface by Neuralink has reportedly helped a primate communicate with a computer interface. There are plans to install a prototype this year into a human. According to Musk, they are still on track to do this.
“It will ultimately be used to make up for entire lost sections of the brain due to stroke/accident/congenital. Don’t want to get too excited, but the potential is truly transformational for restoring brain & motor functions. There is no other way to do it imo,” Musk also wrote on Twitter.
The possibilities for Neuralink’s implant are endless. The symbiosis between humans and AI will be a long shot but Neuralink’s implantable device can pave the way for medical advancements that can help people with chronic neurological problems. Possible medical uses for Neuralink’s device in the future include controlling devices, restoring sensation, and synthetic speech.
CONTROLLING DEVICES
The brain is a complex network of nerves that uses impulses to sense the outside world and to control the human body. Neuralink will use these signals and amplify them so a patient can use them to be more functional. For example, someone with paralyzed upper extremity due to a stroke can have a brain-machine interface on the center of the brain that controls movements of the arm and hands which will help patients feed, dress, and generally function on their own.
Likewise, for someone who has an amputated limb, the Neuralink brain-machine interface will be able to communicate with a robotic arm to help someone use an artificial hand to write or use a computer. It can also be perfect for someone who needs to control a robotic leg to prop one up to stand without the help of anyone.
With a smart home setup, a paralyzed person who cannot clearly or is unable to speak and move can simply command a computer to dim the lights, turn on the air conditioner, or call someone if they need urgent attention.
While it might be a very long shot, these brain-machine interfaces interacting with other future technologies can also serve as bridges to parts of the body that are medically “disconnected”. For example, a patient with spinal cord injury has severed connections between the brain and parts of their body corresponding to the level their spinal cord was injured. The Neuralink implant can play pseudo stem cells that will provide the artificial connection so one can better function. Same for someone with multiple sclerosis whose nerves basically lose the sheath that makes them transmit electrical signals optimally.
“RESTORE” SENSATION
Just like how Neuralink can be exploited to help the brain control movement of a robotic arm, it is highly possible to tap into the sensory cortex of the brain. Sensation allows better manipulation of one’s environment and should be very helpful even when using robotic arms. One can tap the signals of the brain, send it to the brain-machine implant and to the robotic hand, for example, and back. If one grabs a glass of water, it can easily control the movement through space because the patient knows its shape, weight, texture, temperature, among other factors.
The Neuralink team also aims to use the brain-machine interface to “give back” one’s vision by tapping into the visual center of the brain.
SYNTHETIC SPEECH
With its ability to tap into specific signals of the brain, Neuralink also has the potential to create synthetic speech for people who are paralyzed or those with neurological conditions that do not allow them to speak.
These are just some of the things we can see Neuralink will be used for in the future. While all these seem to be fantastical, according to Neuralink, what they’re doing is not pulled from thin air but based on decades of neurological foundation.
Ultimately, with the dream of human-AI symbiosis, as more technologies develop, the use for Neuralink’s brain-machine implant will evolve. Elon Musk mentioned before that perhaps one day, it will be used for telepathic communication between humans or perhaps even drive a Tesla. Or perhaps, in the future, one can upgrade one’s knowledge and download terabytes of information with a blink of an eye through Starlink.
News
Tesla Full Self-Driving (FSD) testing gains major ground in Spain
Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.
Tesla’s Full Self-Driving (Supervised) program is accelerating across Europe, with Spain emerging as a key testing hub under the country’s new ES-AV framework program.
Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.
Spain’s ES-AV framework
Spain’s DGT launched the ES-AV Program in July 2025 to standardize testing for automated vehicles from prototypes to pre-homologation stages. The DGT described the purpose of the program on its official website.
“The program is designed to complement and enhance oversight, regulation, research, and transparency efforts, as well as to support innovation and advancements in automotive technology and industry. This framework also aims to capitalize on the opportunity to position Spain as a pioneer and leader in automated vehicle technology, seeking to provide solutions that help overcome or alleviate certain shortcomings or negative externalities of the current transportation system,” the DGT wrote.
The program identifies three testing phases based on technological maturity and the scope of a company’s operations. Each phase has a set of minimum eligibility requirements, and applicants must indicate which phase they wish to participate in, at least based on their specific technological development.

Tesla FSD tests
As noted by Tesla watcher Kees Roelandschap on X, the DGT’s new framework effectively gives the green flight for nationwide FSD testing. So far, Tesla Spain has a total of 19 vehicles authorized to test FSD on the country’s roads, though it would not be surprising if this fleet grows in the coming months.
The start date for the program is listed at November 27, 2025 to November 26, 2027. The DGT also noted that unlimited FSD tests could be done across Spain on any national route. And since Tesla is already in Phase 3 of the ES-AV Program, onboard safety operators are optional. Remote monitoring would also be allowed.
Tesla’s FSD tests in Spain could help the company gain a lot of real-world data on the country’s roads. Considering the scope of tests that are allowed for the electric vehicle maker, it seems like Spain would be one of the European countries that would be friendly to FSD’s operations. So far, Tesla’s FSD push in Europe is notable, with the company holding FSD demonstrations in Germany, France, and Italy. Tesla is also pushing for national approval in the Netherlands in early 2026.
News
Tesla FSD V14.2.1 is earning rave reviews from users in diverse conditions
Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise.
Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise for its smoother performance and smarter decision-making.
Videos and firsthand accounts from Tesla owners highlight V14.2.1 as an update that improves navigation responsiveness, sign recognition, and overall fluidity, among other things. Some drivers have even described it as “more alive than ever,” hinting at the system eventually feeling “sentient,” as Elon Musk has predicted.
FSD V14.2.1 first impressions
Early adopters are buzzing about how V14.2.1 feels less intrusive while staying vigilant. In a post shared on X, Tesla owner @LactoseLunatic described the update as a “huge leap forward,” adding that the system remains “incredibly assertive but still safe.”
Another Tesla driver, Devin Olsenn, who logged ~600 km on V14.2.1, reported no safety disengagements, with the car feeling “more alive than ever.” The Tesla owner noted that his wife now defaults to using FSD V14, as the system is already very smooth and refined.
Adverse weather and regulatory zones are testing grounds where V14.2.1 shines, at least according to testers in snow areas. Tesla watcher Sawyer Merritt shared a video of his first snowy drive on unplowed rural roads in New Hampshire, where FSD did great and erred on the side of caution. As per Merritt, FSD V14.2.1 was “extra cautious” but it performed well overall.
Sign recognition and freeway prowess
Sign recognition also seemed to show improvements with FSD V14.2.1. Longtime FSD tester Chuck Cook highlighted a clip from his upcoming first-impressions video, showcasing improved school zone behavior. “I think it read the signs better,” he observed, though in standard mode, it didn’t fully drop to 15 mph within the short timeframe. This nuance points to V14.2.1’s growing awareness of temporal rules, a step toward fewer false positives in dynamic environments.
FSD V14.2.1 also seems to excel in high-stress highway scenarios. Fellow FSD tester @BLKMDL3 posted a video of FSD V14.2.1 managing a multi-lane freeway closure due to a police chase-related accident. “Perfectly handles all lanes of the freeway merging into one,” the Tesla owner noted in his post on X.
FSD V14.2.1 was released on Thanksgiving, much to the pleasant surprise of Tesla owners. The update’s release notes are almost identical to the system’s previous iteration, save for one line item read, “Camera visibility can lead to increased attention monitoring sensitivity.”
News
Tesla FSD Supervised ride-alongs in Europe begin in Italy, France, and Germany
The program allows the public to hop in as a non-driving observer to witness FSD navigate urban streets firsthand.
Tesla has kicked off passenger ride-alongs for Full Self-Driving (Supervised) in Italy, France and Germany. The program allows the public to hop in as a non-driving observer to witness FSD navigate urban streets firsthand.
The program, detailed on Tesla’s event pages, arrives ahead of a potential early 2026 Dutch regulatory approval that could unlock a potential EU-wide rollout for FSD.
Hands-Off Demos
Tesla’s ride-along invites participants to “ride along in the passenger seat to experience how it handles real-world traffic & the most stressful parts of daily driving, making the roads safer for all,” as per the company’s announcement on X through its official Tesla Europe & Middle East account.
Sign-ups via localized pages offer free slots through December, with Tesla teams piloting vehicles through city streets, roundabouts and highways.
“Be one of the first to experience Full Self-Driving (Supervised) from the passenger seat. Our team will take you along as a passenger and show you how Full Self-Driving (Supervised) works under real-world road conditions,” Tesla wrote. “Discover how it reacts to live traffic and masters the most stressful parts of driving to make the roads safer for you and others. Come join us to learn how we are moving closer to a fully autonomous future.”
Building trust towards an FSD Unsupervised rollout
Tesla’s FSD (Supervised) ride-alongs could be an effective tool to build trust and get regular car buyers and commuters used to the idea of vehicles driving themselves. By seating riders shotgun, Tesla could provide participants with a front row seat to the bleeding edge of consumer-grade driverless systems.
FSD (Supervised) has already been rolled out to several countries, such as the United States, Canada, Australia, New Zealand, and partially in China. So far, FSD (Supervised) has been received positively by drivers, as it really makes driving tasks and long trips significantly easier and more pleasant.
FSD is a key safety feature as well, which became all too evident when a Tesla driving on FSD was hit by what seemed to be a meteorite in Australia. The vehicle moved safely despite the impact, though the same would likely not be true had the car been driven manually.
