Connect with us

News

Elon Musk’s Neuralink brain-machine interface is turning sci-fi into reality

Published

on

Besides giving the world the option to switch to Tesla emissions-free electric cars and hopes of sending humans to Mars and beyond, Elon Musk also dreams of giving humans symbiosis with artificial intelligence through an implantable brain-machine interface created by Neuralink, a company he founded in 2016.

Neuralink is working on improving the basic structures of high-density Utah Array, a tiny chip that has become the industry benchmark for recording large populations of neurons. Dr. Richard Norman from the University of Utah invented the chip in 1997, which acts as an ultra-thin, flexible, and biocompatible polymer that connects the human brain to a tiny chip. During an event last year, Neurallink explained that the implant can be placed behind the ear and can interpret brain signals. Musk’s neural tech company has also invented a robot that can sew the implant to the brain with better precision than any human surgeon.

Advertisement

So far, the brain-machine interface by Neuralink has reportedly helped a primate communicate with a computer interface. There are plans to install a prototype this year into a human. According to Musk, they are still on track to do this.

It will ultimately be used to make up for entire lost sections of the brain due to stroke/accident/congenital. Don’t want to get too excited, but the potential is truly transformational for restoring brain & motor functions. There is no other way to do it imo,” Musk also wrote on Twitter.

The possibilities for Neuralink’s implant are endless. The symbiosis between humans and AI will be a long shot but Neuralink’s implantable device can pave the way for medical advancements that can help people with chronic neurological problems.  Possible medical uses for Neuralink’s device in the future include controlling devices, restoring sensation, and synthetic speech.

CONTROLLING DEVICES

The brain is a complex network of nerves that uses impulses to sense the outside world and to control the human body. Neuralink will use these signals and amplify them so a patient can use them to be more functional. For example, someone with paralyzed upper extremity due to a stroke can have a brain-machine interface on the center of the brain that controls movements of the arm and hands which will help patients feed, dress, and generally function on their own.

Advertisement

Likewise, for someone who has an amputated limb, the Neuralink brain-machine interface will be able to communicate with a robotic arm to help someone use an artificial hand to write or use a computer. It can also be perfect for someone who needs to control a robotic leg to prop one up to stand without the help of anyone.

With a smart home setup, a paralyzed person who cannot clearly or is unable to speak and move can simply command a computer to dim the lights, turn on the air conditioner, or call someone if they need urgent attention.

While it might be a very long shot, these brain-machine interfaces interacting with other future technologies can also serve as bridges to parts of the body that are medically “disconnected”. For example, a patient with spinal cord injury has severed connections between the brain and parts of their body corresponding to the level their spinal cord was injured. The Neuralink implant can play pseudo stem cells that will provide the artificial connection so one can better function. Same for someone with multiple sclerosis whose nerves basically lose the sheath that makes them transmit electrical signals optimally.

“RESTORE” SENSATION

Just like how Neuralink can be exploited to help the brain control movement of a robotic arm, it is highly possible to tap into the sensory cortex of the brain. Sensation allows better manipulation of one’s environment and should be very helpful even when using robotic arms. One can tap the signals of the brain, send it to the brain-machine implant and to the robotic hand, for example, and back. If one grabs a glass of water, it can easily control the movement through space because the patient knows its shape, weight, texture, temperature, among other factors.

Advertisement

The Neuralink team also aims to use the brain-machine interface to “give back” one’s vision by tapping into the visual center of the brain.

SYNTHETIC SPEECH

With its ability to tap into specific signals of the brain, Neuralink also has the potential to create synthetic speech for people who are paralyzed or those with neurological conditions that do not allow them to speak.

These are just some of the things we can see Neuralink will be used for in the future. While all these seem to be fantastical, according to Neuralink, what they’re doing is not pulled from thin air but based on decades of neurological foundation.

Ultimately, with the dream of human-AI symbiosis, as more technologies develop, the use for Neuralink’s brain-machine implant will evolve. Elon Musk mentioned before that perhaps one day, it will be used for telepathic communication between humans or perhaps even drive a Tesla. Or perhaps, in the future, one can upgrade one’s knowledge and download terabytes of information with a blink of an eye through Starlink.

Advertisement

A curious soul who keeps wondering how Elon Musk, Tesla, electric cars, and clean energy technologies will shape the future, or do we really need to escape to Mars.

Advertisement
Comments

Elon Musk

Tesla owners surpass 8 billion miles driven on FSD Supervised

Tesla shared the milestone as adoption of the system accelerates across several markets.

Published

on

Credit: Tesla

Tesla owners have now driven more than 8 billion miles using Full Self-Driving Supervised, as per a new update from the electric vehicle maker’s official X account. 

Tesla shared the milestone as adoption of the system accelerates across several markets.

“Tesla owners have now driven >8 billion miles on FSD Supervised,” the company wrote in its post on X. Tesla also included a graphic showing FSD Supervised’s miles driven before a collision, which far exceeds that of the United States average. 

The growth curve of FSD Supervised’s cumulative miles over the past five years has been notable. As noted in data shared by Tesla watcher Sawyer Merritt, annual FSD (Supervised) miles have increased from roughly 6 million in 2021 to 80 million in 2022, 670 million in 2023, 2.25 billion in 2024, and 4.25 billion in 2025. In just the first 50 days of 2026, Tesla owners logged another 1 billion miles.

Advertisement

At the current pace, the fleet is trending towards hitting about 10 billion FSD Supervised miles this year. The increase has been driven by Tesla’s growing vehicle fleet, periodic free trials, and expanding Robotaxi operations, among others.

Tesla also recently updated the safety data for FSD Supervised on its website, covering North America across all road types over the latest 12-month period.

As per Tesla’s figures, vehicles operating with FSD Supervised engaged recorded one major collision every 5,300,676 miles. In comparison, Teslas driven manually with Active Safety systems recorded one major collision every 2,175,763 miles, while Teslas driven manually without Active Safety recorded one major collision every 855,132 miles. The U.S. average during the same period was one major collision every 660,164 miles.

During the measured period, Tesla reported 830 total major collisions with FSD (Supervised) engaged, compared to 16,131 collisions for Teslas driven manually with Active Safety and 250 collisions for Teslas driven manually without Active Safety. Total miles logged exceeded 4.39 billion miles for FSD (Supervised) during the same timeframe.

Advertisement
Continue Reading

Elon Musk

The Boring Company’s Music City Loop gains unanimous approval

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project.

Published

on

The-boring-company-vegas-loop-chinatown
(Credit: The Boring Company)

The Metro Nashville Airport Authority (MNAA) has approved a 40-year agreement with Elon Musk’s The Boring Company to build the Music City Loop, a tunnel system linking Nashville International Airport to downtown. 

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project. Under the terms, The Boring Company will pay the airport authority an annual $300,000 licensing fee for the use of roughly 933,000 square feet of airport property, with a 3% annual increase.

Over 40 years, that totals to approximately $34 million, with two optional five-year extensions that could extend the term to 50 years, as per a report from The Tennesean.

The Boring Company celebrated the Music City Loop’s approval in a post on its official X account. “The Metropolitan Nashville Airport Authority has unanimously (7-0) approved a Music City Loop connection/station. Thanks so much to @Fly_Nashville for the great partnership,” the tunneling startup wrote in its post. 

Advertisement

Once operational, the Music City Loop is expected to generate a $5 fee per airport pickup and drop-off, similar to rideshare charges. Airport officials estimate more than $300 million in operational revenue over the agreement’s duration, though this projection is deemed conservative.

“This is a significant benefit to the airport authority because we’re receiving a new way for our passengers to arrive downtown at zero capital investment from us. We don’t have to fund the operations and maintenance of that. TBC, The Boring Co., will do that for us,” MNAA President and CEO Doug Kreulen said. 

The project has drawn both backing and criticism. Business leaders cited economic benefits and improved mobility between downtown and the airport. “Hospitality isn’t just an amenity. It’s an economic engine,” Strategic Hospitality’s Max Goldberg said.

Opponents, including state lawmakers, raised questions about environmental impacts, worker safety, and long-term risks. Sen. Heidi Campbell said, “Safety depends on rules applied evenly without exception… You’re not just evaluating a tunnel. You’re evaluating a risk, structural risk, legal risk, reputational risk and financial risk.”

Advertisement
Continue Reading

Elon Musk

Tesla announces crazy new Full Self-Driving milestone

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

Published

on

Credit: Tesla

Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.

The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.

On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.

Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.

Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.

This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.

The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.

Continue Reading