News
Elon Musk says SpaceX could catch Crew Dragon and NASA astronauts with a giant net
Shortly after SpaceX flawlessly completed Crew Dragon’s In-Flight Abort (IFA) test earlier today, CEO Elon Musk – speaking at a post-launch press conference – revealed that SpaceX wants to try to catch future Dragon spacecraft with the same ships – and giant nets – it uses to recover Falcon fairings.
This is not the first time Musk has mentioned such a plan. Back in February 2018, he noted that SpaceX ship Mr. Steven (now Ms. Tree), designed to catch parasailing fairing halves out of the air, “might be able to do the same thing with Dragon — if NASA wants us to, we can try to catch Dragon.” The motivation behind catching Dragon – instead of fishing it out of the Atlantic Ocean – is effectively the same reason that SpaceX is trying to routinely catch Falcon fairings: it’s much easier to reuse aerospace hardware that hasn’t been dunked and soaked in saltwater.
Of course, Musk cautioned that SpaceX would only pursue Dragon catches if NASA were open to the idea – the space agency’s conservatism is already largely responsible for the death of propulsive Crew Dragon landing, also intended to make spacecraft reuse much easier. Additionally, the CEO qualified his comments by noting that SpaceX would attempt to catch Crew Dragon only after Falcon fairing halves are being routinely and reliably caught.
As it turns out, both fairing recovery ships Ms. Tree and Ms. Chief are set to attempt their second simultaneous fairing catch less than 48 hours from now.
Ms. Tree and Ms. Chief actually departed their Port Canaveral home berths on the evening of January 18th, barely 12 hours before Falcon 9 B1046 lifted off for fourth and final time and was sacrificed for a thankfully flawless Crew Dragon abort test. The fast recovery ships – each outfitted with a giant net – are scheduled to attempt their second-ever simultaneous recovery of both halves of a Falcon 9 payload fairing.
Barely 48 hours after Crew Dragon’s IFA test, SpaceX has another Falcon 9 launch scheduled to lift off as early as 11:59 am EST (16:59 UTC) on Monday, January 21st. The mission will be SpaceX’s second Starlink satellite launch and third launch overall this month and is set to place the fourth batch of 60 Starlink internet satellites into low Earth orbit (LEO). Like all SpaceX satellite launches, the mission – Starlink V1 L3 or the third launch of Starlink v1.0 spacecraft – will feature a standard Falcon 9 fairing.
Around three minutes after liftoff, said fairing will separate into its two halves, deploying from the top of Falcon 9 and beginning a 100+ km (63+ mi) journey back to Earth. For SpaceX’s unique payload fairing, that journey includes reorienting with cold-gas thrusters, deploying a GPS-guided parafoil, and attempting to gently land in a giant net carried on the back off a ship.
Thus far, SpaceX has attempted to catch Falcon fairing halves nine separate times, resulting in two successful catches in June and August 2019. Two subsequent catch attempts in December 2019 and January 2020 were unsuccessful, a strong sign that SpaceX still has a ways to go before fairing catches are as routine and reliable as Falcon booster recovery.
As such, it’s unlikely that Ms. Tree or Ms. Chief will be catching Crew or Cargo Dragon capsules anytime soon. Still, it’s increasingly clear that every fairing catch attempt will also represent a potential step towards the goal of keeping Dragons and the NASA astronauts they’ll carry as dry as possible.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.
Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage.
These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.
FSD mileage milestones
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities.
City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos.
Tesla’s data edge
Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own.
So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.”
“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X.
News
Tesla starts showing how FSD will change lives in Europe
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options.
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Officials see real impact on rural residents
Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”
The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.
What the Ministry for Economic Affairs and Transport says
Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents.
“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe.
“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post.
News
Tesla China quietly posts Robotaxi-related job listing
Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China.
As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Robotaxi-specific role
The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi.
Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.
China Robotaxi launch
China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.
This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees.