News
Tesla’s Elon Musk details Model Y manufacturing improvements, insight on design
Tesla CEO Elon Musk recently revealed improvements the all-electric car maker has made to its production process for the Model Y crossover SUV. In an interview on Ride the Lightning podcast, hosted by Ryan McCaffrey, Musk discussed lessons learned from Tesla’s prior transition from the Model S to the Model X as applicable to the Model Y, as well as decisions made from the vehicle’s outgrowth of the Model 3. He additionally provided some insight on the design decisions behind the Model 3, which also carry over to the Model Y’s design.
Musk and McCaffrey’s discussion about the Model Y production process began with the question, “What are the biggest lessons learned from the Model 3 program that you’re applying to the Model Y?” However, Musk indicated that a more relative learning comparison came from Tesla’s design of the Model X and its departure from the Model S.
“The Model X ended up being a radical departure from the S…with the Model Y, we wanted to avoid the technology bandwagon we had with the X. It should have been easy going from S to X, but instead, it was hell because of so many new technologies…It would be too risky to the company to do that with the Y,” Musk explained.
I'm celebrating episode 200 of Ride the Lightning, my weekly @Tesla podcast, in THE BEST way possible: a 1-hour interview with @elonmusk himself! 🥳 I can't wait to share our conversation with all of you! It airs this Sunday, June 2 @ 9am ET/6am PT on major podcast services. 🚗⚡️ pic.twitter.com/V0nFrU03Ir
— Ryan McCaffrey (@DMC_Ryan) May 30, 2019
The Model Y crossover needed to address the flexibility expected of vehicles in its class such as cargo capacity, seating for 6 or 7 people, and more ride height than a sedan. Tesla addressed these features while also keeping in mind the effect on battery range a larger vehicle might have, according to Musk.
“We tried to make the car as similar to the [Model 3] as possible except in the case where a change was necessary to achieve SUV functionality…[all] while still having a low drag coefficient and not increasing the frontal area too much,” he detailed. Overall, Musk concluded that CdA (automobile drag coefficient) and mass of the Model Y only affect 8-10% of the battery range when compared to the Model 3.
The design of Tesla’s Model Y and lessons learned from Model 3 production also led to some manufacturing improvements for the electric crossover. Musk detailed how the Model Y underbody was switched to aluminum casting instead of stamped steel and aluminum pieces, which greatly simplifies the moving parts involved in making the vehicle.
This change effectively means that initially, using two castings to make the structure will take the process from 70 parts to 4 (castings plus joiners), and once the “big” casting machine comes into operation, the process will have brought the process from 70 parts to 1 (casting only). Using casting over stamping reduces the weight of the Model Y, improves MHB (heat produced), lowers cost due to the smaller number of parts necessary, and significantly drops capital expenditure on robots.

As for the manufacturing location of the Model Y, Musk said the decision was not quite final, but the default place was Tesla’s factory in Fremont, California, with the runner-up being Gigafactory 1 in Sparks, Nevada. Producing the Model Y in Fremont would be the fastest way to bring the crossover SUV into production, according to Musk. “One choice isn’t natural over other,” he said. Freemont is producing the Model 3 and the two vehicles share 75% of their components, but Gigafactory 1’s location has a lower cost of living, meaning an overall better value for Tesla.
The similarities between the Model Y and Model 3 being what they are, Musk also discussed with McCaffrey some of the design decisions that initially went into creating the Model 3. In response to the question, “What’s the toughest design decision you had to make on Model 3?”, the CEO cited two primary factors that went into the midsize sedan’s creation: the touchscreen and the nose design.
Reducing the number of screens from two in the Model S to one in the Model 3 came with some pushback, Musk explained. However, he felt that owners would prefer an open view of the road, and everything needed while driving could be fit onto one screen.
This background brought up community rumors about a heads-up display (HUD) being included in Tesla’s vehicles. On the subject, Musk set the record straight – there was never any plan to include a HUD, nor will one be added in the future. He simply doesn’t like them, and the move to self-driving makes them pointless. “We discussed it, but I’ve tried various heads up displays and found they were annoying,” he said. “We felt the car would increasingly go to self-driving…As things are approaching autonomy, why project things you don’t even care about on the screen?”

Something that customers do care about, though, is the look of their car. Musk detailed the difficulties in making an attractive design for the Model 3, which wasn’t easy thanks to the lack of a front grill on the vehicle. “You don’t want to have the nose to look like Voldemort…You’ve got to get some character or it does not look good.”
Also mentioned was the decision to reduce the width of the Model 3 to 185 cm over the 195 cm of the Model S to help sell more cars in Japan. The country’s parking machines only accept cars up to 195.4 cm wide, which leaves very little wiggle room in the manufacturing process to meet. The change to 185 cm meant that any Tesla Model 3 could fit in any parking garage in Japan.
The Model Y is set to begin production in 2020, and reservations are currently open on Tesla’s website.
Listen to McCaffrey’s full Ride the Lightning podcast interview here.
News
Tesla is improving Giga Berlin’s free “Giga Train” service for employees
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
New shuttle route
As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.
“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.
Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.
Tesla pushes for majority rail commuting
Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.
The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.
News
Tesla Model 3 and Model Y dominate China’s real-world efficiency tests
The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.
Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions.
The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.
Tesla secures top efficiency results
Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report.
These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla
Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker.
“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.
Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.
Elon Musk
Elon Musk reveals what will make Optimus’ ridiculous production targets feasible
Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.
Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.
Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.
The highest volume product
Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.
Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.
Self-replication is key
During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.
The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems.
If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.
