Connect with us

News

Tesla’s Elon Musk details Model Y manufacturing improvements, insight on design

Tesla Model Y outside Fremont seat factory. | Image: Reddit u/backstreetatnight

Published

on

Tesla CEO Elon Musk recently revealed improvements the all-electric car maker has made to its production process for the Model Y crossover SUV. In an interview on Ride the Lightning podcast, hosted by Ryan McCaffrey, Musk discussed lessons learned from Tesla’s prior transition from the Model S to the Model X as applicable to the Model Y, as well as decisions made from the vehicle’s outgrowth of the Model 3. He additionally provided some insight on the design decisions behind the Model 3, which also carry over to the Model Y’s design.

Musk and McCaffrey’s discussion about the Model Y production process began with the question, “What are the biggest lessons learned from the Model 3 program that you’re applying to the Model Y?” However, Musk indicated that a more relative learning comparison came from Tesla’s design of the Model X and its departure from the Model S.

“The Model X ended up being a radical departure from the S…with the Model Y, we wanted to avoid the technology bandwagon we had with the X. It should have been easy going from S to X, but instead, it was hell because of so many new technologies…It would be too risky to the company to do that with the Y,” Musk explained.

The Model Y crossover needed to address the flexibility expected of vehicles in its class such as cargo capacity, seating for 6 or 7 people, and more ride height than a sedan. Tesla addressed these features while also keeping in mind the effect on battery range a larger vehicle might have, according to Musk.

“We tried to make the car as similar to the [Model 3] as possible except in the case where a change was necessary to achieve SUV functionality…[all] while still having a low drag coefficient and not increasing the frontal area too much,” he detailed. Overall, Musk concluded that CdA (automobile drag coefficient) and mass of the Model Y only affect 8-10% of the battery range when compared to the Model 3.

The design of Tesla’s Model Y and lessons learned from Model 3 production also led to some manufacturing improvements for the electric crossover. Musk detailed how the Model Y underbody was switched to aluminum casting instead of stamped steel and aluminum pieces, which greatly simplifies the moving parts involved in making the vehicle.

Advertisement

This change effectively means that initially, using two castings to make the structure will take the process from 70 parts to 4 (castings plus joiners), and once the “big” casting machine comes into operation, the process will have brought the process from 70 parts to 1 (casting only). Using casting over stamping reduces the weight of the Model Y, improves MHB (heat produced), lowers cost due to the smaller number of parts necessary, and significantly drops capital expenditure on robots.

Tesla’s factory in Fremont is largely driven by a robotic manufacturing process. | Image: Tesla

As for the manufacturing location of the Model Y, Musk said the decision was not quite final, but the default place was Tesla’s factory in Fremont, California, with the runner-up being Gigafactory 1 in Sparks, Nevada. Producing the Model Y in Fremont would be the fastest way to bring the crossover SUV into production, according to Musk. “One choice isn’t natural over other,” he said. Freemont is producing the Model 3 and the two vehicles share 75% of their components, but Gigafactory 1’s location has a lower cost of living, meaning an overall better value for Tesla.

The similarities between the Model Y and Model 3 being what they are, Musk also discussed with McCaffrey some of the design decisions that initially went into creating the Model 3. In response to the question, “What’s the toughest design decision you had to make on Model 3?”, the CEO cited two primary factors that went into the midsize sedan’s creation: the touchscreen and the nose design.

Reducing the number of screens from two in the Model S to one in the Model 3 came with some pushback, Musk explained. However, he felt that owners would prefer an open view of the road, and everything needed while driving could be fit onto one screen.

This background brought up community rumors about a heads-up display (HUD) being included in Tesla’s vehicles. On the subject, Musk set the record straight – there was never any plan to include a HUD, nor will one be added in the future. He simply doesn’t like them, and the move to self-driving makes them pointless. “We discussed it, but I’ve tried various heads up displays and found they were annoying,” he said. “We felt the car would increasingly go to self-driving…As things are approaching autonomy, why project things you don’t even care about on the screen?”

Advertisement
The nose of Tesla’s Model 3, which decidedly does not look like Lord Voldemort. | Image: Tesla

Something that customers do care about, though, is the look of their car. Musk detailed the difficulties in making an attractive design for the Model 3, which wasn’t easy thanks to the lack of a front grill on the vehicle. “You don’t want to have the nose to look like Voldemort…You’ve got to get some character or it does not look good.”

Also mentioned was the decision to reduce the width of the Model 3 to 185 cm over the 195 cm of the Model S to help sell more cars in Japan. The country’s parking machines only accept cars up to 195.4 cm wide, which leaves very little wiggle room in the manufacturing process to meet. The change to 185 cm meant that any Tesla Model 3 could fit in any parking garage in Japan.

The Model Y is set to begin production in 2020, and reservations are currently open on Tesla’s website.

Listen to McCaffrey’s full Ride the Lightning podcast interview here.

Advertisement

Accidental computer geek, fascinated by most history and the multiplanetary future on its way. Quite keen on the democratization of space. | It's pronounced day-sha, but I answer to almost any variation thereof.

Advertisement
Comments

Elon Musk

Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)

Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Published

on

SpaceX's first Falcon Heavy launch also happened to be a strategic and successful test of Falcon upper stage coast capabilities. (SpaceX)

When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.

At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.

The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.

Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Advertisement
Credit: SpaceX

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.

And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.

SpaceX’s trajectory has been just as dramatic.

The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon Heavy successfully clears the tower after its maiden launch, February 6, 2018. (Tom Cross)

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.

Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.

Advertisement

And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.

In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.

The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Advertisement
Continue Reading

Energy

Tesla launches Cybertruck vehicle-to-grid program in Texas

The initiative was announced by the official Tesla Energy account on social media platform X.

Published

on

Credit: Tesla

Tesla has launched a vehicle-to-grid (V2G) program in Texas, allowing eligible Cybertruck owners to send energy back to the grid during high-demand events and receive compensation on their utility bills. 

The initiative, dubbed Powershare Grid Support, was announced by the official Tesla Energy account on social media platform X.

Texas’ Cybertruck V2G program

In its post on X, Tesla Energy confirmed that vehicle-to-grid functionality is “coming soon,” starting with select Texas markets. Under the new Powershare Grid Support program, owners of the Cybertruck equipped with Powershare home backup hardware can opt in through the Tesla app and participate in short-notice grid stress events.

During these events, the Cybertruck automatically discharges excess energy back to the grid, supporting local utilities such as CenterPoint Energy and Oncor. In return, participants receive compensation in the form of bill credits. Tesla noted that the program is currently invitation-only as part of an early adopter rollout.

Advertisement

The launch builds on the Cybertruck’s existing Powershare capability, which allows the vehicle to provide up to 11.5 kW of power for home backup. Tesla added that the program is expected to expand to California next, with eligibility tied to utilities such as PG&E, SCE, and SDG&E.

Powershare Grid Support

To participate in Texas, Cybertruck owners must live in areas served by CenterPoint Energy or Oncor, have Powershare equipment installed, enroll in the Tesla Electric Drive plan, and opt in through the Tesla app. Once enrolled, vehicles would be able to contribute power during high-demand events, helping stabilize the grid.

Tesla noted that events may occur with little notice, so participants are encouraged to keep their Cybertrucks plugged in when at home and to manage their discharge limits based on personal needs. Compensation varies depending on the electricity plan, similar to how Powerwall owners in some regions have earned substantial credits by participating in Virtual Power Plant (VPP) programs.

Continue Reading

News

Samsung nears Tesla AI chip ramp with early approval at TX factory

This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.

Published

on

Tesla-Chips-HW3-1
Image used with permission for Teslarati. (Credit: Tom Cross)

Samsung has received temporary approval to begin limited operations at its semiconductor plant in Taylor, Texas.

This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.

Samsung clears early operations hurdle

As noted in a report from Korea JoongAng Daily, Samsung Electronics has secured temporary certificates of occupancy (TCOs) for a portion of its semiconductor facility in Taylor. This should allow the facility to start operations ahead of full completion later this year.

City officials confirmed that approximately 88,000 square feet of Samsung’s Fab 1 building has received temporary approval, with additional areas expected to follow. The overall timeline for permitting the remaining sections has not yet been finalized.

Advertisement

Samsung’s Taylor facility is expected to manufacture Tesla’s AI5 chips once mass production begins in the second half of the year. The facility is also expected to produce Tesla’s upcoming AI6 chips. 

Tesla CEO Elon Musk recently stated that the design for AI5 is nearly complete, and the development of AI6 is already underway. Musk has previously outlined an aggressive roadmap targeting nine-month design cycles for successive generations of its AI chips.

Samsung’s U.S. expansion

Construction at the Taylor site remains on schedule. Reports indicate Samsung plans to begin testing extreme ultraviolet (EUV) lithography equipment next month, a critical step for producing advanced 2-nanometer semiconductors.

Samsung is expected to complete 6 million square feet of floor space at the site by the end of this year, with an additional 1 million square feet planned by 2028. The full campus spans more than 1,200 acres.

Advertisement

Beyond Tesla, Samsung Foundry is also pursuing additional U.S. customers as demand for AI and high-performance computing chips accelerates. Company executives have stated that Samsung is looking to achieve more than 130% growth in 2-nanometer chip orders this year.

One of Samsung’s biggest rivals, TSMC, is also looking to expand its footprint in the United States, with reports suggesting that the company is considering expanding its Arizona facility to as many as 11 total plants. TSMC is also expected to produce Tesla’s AI5 chips. 

Advertisement
Continue Reading