News
The Boring Company’s gantry and next-gen TBM takes shape ahead of Chicago project
While The Boring Company is hard at work preparing for the upcoming public showing of its proof-of-concept tunnel in Hawthorne, CA on December 10, the tunneling startup also appears to be laying the foundations for its high-profile transport project in Chicago. The project, which would connect downtown Chicago to O’Hare airport, is expected to break ground within the next few months.
The contract for the Chicago-O’Hare transport line had several key bidders, including veteran conglomerates with decades of experience in building transportation systems. Quite surprisingly, Chicago awarded the contract for the project to the young tunneling startup, partly due to The Boring Company’s commitment to funding the tunnel system through private investors. In true Elon Musk fashion, the timeline for the Chicago tunnels is aggressive, with the startup aiming to have the high-speed systems operational in 18-24 months after the initial digging.
The Boring Company has issued few updates on the Chicago project since it won the contract last June. Save for an image of a tunnel boring machine gantry that was shared on Twitter; the tunneling startup has been quite silent about the progress of its preparations for the high-profile project. Earlier this month, though, Teslarati photographers Pauline Acalin and Tom Cross were able to snap more images of the TBM gantry being built for the Chicago transport line. What’s more, sophisticated equipment in the same site also suggests that a large machine — possibly The Boring Company’s new TBM — is under construction.
- The Boring Company’s site for the assembly of its TBM gantry and its next-generation boring machine. [Credit: Pauline Acalin/Teslarati]
- The Boring Company’s site for the assembly of its TBM gantry and its next-generation boring machine. [Credit: Pauline Acalin/Teslarati]
The Boring Company’s construction site for its gantry and TBM. [Credit: Pauline Acalin/Teslarati]
During the Boring Company’s information session earlier this year, Elon Musk described the design of the startup’s tunnel boring machines. According to Musk, Godot, the company’s first TBM, is a conventional tunneling machine. Line-Storm, which was announced by Musk on Twitter last October, would be a hybrid, with parts from conventional boring machines and custom hardware designed by the company. Thanks to its hybrid nature, Line-Storm would be 2x faster than Godot. Proof-Rock, a third-generation TBM, will be developed entirely by the Boring Company, and it would be 10-15x faster than conventional TBMs.
It remains to be seen if the machine seemingly being assembled at the Hawthorne site is Line-Storm or Proof-Rock. That said, the Boring Company’s TBM for Chicago would most likely feature the startup’s most advanced tunneling tech yet. During the information session, Musk stated that the company’s boring machines, thanks to their electric nature (or partially-partially electric in the case of Line-Storm), the Boring Co’s machines are around 3x more powerful than conventional TBMs. The TBMs will be powered by Tesla batteries as well, eliminating the need for cabling in the actual tunneling site.
- A TBM gantry under construction. [Credit: Pauline Acalin/Teslarati]
- The Boring Company’s construction site for its gantry and TBM. [Credit: Tom Cross/Teslarati]
- The Boring Company’s next-gen tunnel-boring machine seen in its early stages, October 5th. [Credit: Tom Cross/Teslarati]
The Boring Company’s construction site for its gantry and TBM. [Credit: Pauline Acalin and Tom Cross/Teslarati]
The Chicago-O’Hare line is the Boring Company’s most ambitious project to date, estimated to be more than 17 miles long and costing around $1 billion when it’s complete. The transport line would feature the Loop System, which utilizes electric pods designed to transport up to 16 commuters at a time. The pods, which would be constructed by Tesla Inc., are all-electric, and are capable of traveling up to 150 mph. Seemingly as a means to make the manufacturing of the Urban Loop pods quicker and more efficient, Tesla would be using the Model X chassis as a basis for the vehicles.
Apart from the work being done on the Chicago TBM gantry, as well as the apparent assembly of its next tunnel boring machine, The Boring Company is also hard at work in completing its Hawthorne tunnel, which is set for public showing this coming December 10. A prototype garage-elevator concept that connects directly to the Hawthorne test tunnels is also being built on a private lot at 120th Street and Prairie Avenue, roughly halfway in the company’s 2-mile Hawthorne test tunnel.
News
Tesla is improving Giga Berlin’s free “Giga Train” service for employees
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
New shuttle route
As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.
“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.
Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.
Tesla pushes for majority rail commuting
Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.
The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.
News
Tesla Model 3 and Model Y dominate China’s real-world efficiency tests
The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.
Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions.
The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.
Tesla secures top efficiency results
Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report.
These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla
Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker.
“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.
Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.
Elon Musk
Elon Musk reveals what will make Optimus’ ridiculous production targets feasible
Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.
Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.
Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.
The highest volume product
Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.
Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.
Self-replication is key
During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.
The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems.
If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.





