

Space
Solar Orbiter heads to the sun in mission to unravel its mysteries, takes first space measurements
The European Space Agency’s (ESA) Solar Orbiter spacecraft is traveling through the cosmos. Its destination: the inner solar system. The 3,900-lb. (1,800-kg) spacecraft will work in tandem with NASA’s Parker Solar Probe to unravel solar mysteries that have puzzled scientists for decades.
The probe will spend the next two years cruising towards the sun and using both Venus and the Earth to slingshot itself out of the ecliptic plane — the area of space where all planets orbit. This vantage point will allow the spacecraft to eventually look down upon the sun’s polar regions and snap the very first images of this crucial area.
“We believe this area holds the keys to unraveling the mysteries of the sun’s activity cycle,” Daniel Müller, the mission’s ESA project scientist, said in a prelaunch science briefing on Feb. 7.
The Solar Orbiter and its suite of 10 specialized instruments will act as a mobile laboratory in space, tracking eruptions of solar materials from their origin on the surface of the sun, out into space, and all the way down to Earth.
“Our entire solar system is governed by the activity that comes from the sun,” Nicky Fox, director of NASA’s Heliophysics Division said during the mission’s science briefing. “There’s a continually streaming kind of soup of energetic particles that moves away from the sun and bathes all the planets. We call that the solar wind.”
Together, the solar wind and the sun’s magnetic field create a huge bubble known as the heliosphere, which shields the Earth from powerful interstellar radiation called cosmic rays.
Coronal mass ejections (CMEs) are energetic eruptions of solar material and when they make it to Earth, the solar particles can interact with our planet’s magnetic field to produce powerful electromagnetic fluctuations. Known as geomagnetic storms, they are troublesome because they’re known to disrupt technologies like communications systems and even power grids.
Additionally, they can also be dangerous to astronauts and satellites in space. Solar Orbiter will help mitigate damages from these types of storms by helping scientists better predict when they might happen.
Solar Orbiter launched atop an Atlas V rocket on Feb. 9 at 11:03 p.m. EST (0403 GMT on Feb. 10). About an hour after liftoff, the spacecraft separated from the rocket’s upper stage as planned, extended its solar arrays and sent a signal back to Earth that it had power.
The spacecraft then spent the next several days deploying its communication antennas as well as its instrument boom.
Its first three months are what’s known as a commissioning phase, during which ground controllers will check out the onboard instruments to make sure everything is in working order. Two years from now, the spacecraft will be close enough to take its first detailed measurements of the sun, but we didn’t have to wait that long for the first bits of science data to come in.
Solar Orbiter carries ten scientific instruments, four in situ (meaning they measure the environment around the spacecraft) and six remote-sensing imagers (which will measure the sun’s properties). The majority of the in situ instruments are located on a 4.4-m-long extendable boom. They study the electromagnetic characteristics of the solar wind, as well as the stream of charged particles flowing from the Sun.
“We measure magnetic fields thousands of times smaller than those we are familiar with on Earth,” Tim Horbury, principal investigator for the magnetometer (MAG) instrument on the Solar Orbiter, said in the statement. “Even currents in electrical wires make magnetic fields far larger than what we need to measure. That’s why our sensors are on a boom, to keep them away from all the electrical activity inside the spacecraft.”
Designed to measure the strength and direction of the magnetic field, the MAG (which is composed of two sensors) was the first instrument to send back data.
“The data we received shows how the magnetic field decreases from the vicinity of the spacecraft to where the instruments are actually deployed,” Horbury said in the same statement. “This is an independent confirmation that the boom actually deployed and that the instruments will, indeed, provide accurate scientific measurements in the future.”
The boom is a pole made constructed out of titanium and carbon-fiber that houses three instruments, which are so sensitive that they need to be kept away from the main body of the spacecraft to avoid potential electromagnetic disturbances.
“Measuring before, during, and after the boom deployment helps us to identify and characterize signals that are not linked to the solar wind, such as perturbations coming from the spacecraft platform and other instruments,” Matthieu Kretzschmar, lead co-investigator of the high-frequency magnetometer of the Radio and Plasma Waves instrument (RPW) instrument, which is also located on the boom and will study properties of the solar wind.
The team will continue to calibrate the spacecraft’s suite of instruments and will begin collecting official science data as early as May.
Elon Musk
SpaceX to decommission Dragon spacecraft in response to Pres. Trump war of words with Elon Musk
Elon Musk says SpaceX will decommission Dragon as a result of President Trump’s threat to end his subsidies and government contracts.

SpaceX will decommission its Dragon spacecraft in response to the intense war of words that President Trump and CEO Elon Musk have entered on various social media platforms today.
President Trump and Musk, who was once considered a right-hand man to Trump, have entered a vicious war of words on Thursday. The issues stem from Musk’s disagreement with the “Big Beautiful Bill,” which will increase the U.S. federal deficit, the Tesla and SpaceX frontman says.
How Tesla could benefit from the ‘Big Beautiful Bill’ that axes EV subsidies
The insults and threats have been brutal, as Trump has said he doesn’t know if he’ll respect Musk again, and Musk has even stated that the President would not have won the election in November if it were not for him.
President Trump then said later in the day that:
“The easiest way to save money in our Budget, Billions and Billions of Dollars, is to terminate Elon’s Government Subsidies and Contracts. I was always surprised that Biden didn’t do it!”
Musk’s response was simple: he will decommission the SpaceX capsule responsible for transporting crew and cargo to the International Space Station (ISS): Dragon.
🚨 Elon says Dragon will be decommissioned immediately due to President Trump’s threats to terminate SpaceX’s government contracts https://t.co/XNB0LflZIy
— TESLARATI (@Teslarati) June 5, 2025
Dragon has completed 51 missions, 46 of which have been to the ISS. It is capable of carrying up to 7 passengers to and from Earth’s orbit. It is the only spacecraft that is capable of returning vast amounts of cargo to Earth. It is also the first private spacecraft to take humans to the ISS.
The most notable mission Dragon completed is one of its most recent, as SpaceX brought NASA astronauts Butch Wilmore and Suni Williams back to Earth after being stranded at the ISS by a Boeing Starliner capsule.
SpaceX’s reluctance to participate in federally funded projects may put the government in a strange position. It will look to bring Boeing back in to take a majority of these projects, but there might be some reluctance based on the Starliner mishap with Wilmore and Williams.
SpaceX bails out Boeing and employees are reportedly ‘humiliated’
News
SpaceX hit with mishap investigation by FAA for Starship Flight 9
Starship’s ninth test flight has the FAA requiring a mishap investigation from SpaceX.

SpaceX has been hit with yet another mishap investigation by the Federal Aviation Administration (FAA) related to the company’s ninth test flight of Starship earlier this week.
The FAA said the mishap investigation is “focused only on the loss of the Starship vehicle, which did not complete its launch or reentry as planned.” The agency said the loss of the Super Heavy booster is covered by one of the FAA’s approved test induced damage exceptions requested by SpaceX.
All of Starship and Super Heavy booster debris landed within the designated hazard areas, the FAA confirmed.
It said it activated a Debris Response Area out of an abundance of caution as the booster “experienced its anomaly over the Gulf of America during its flyback toward Texas. The FAA subsequently determined the debris did not fall outside of the hazard area. During the event there were zero departure delays, one flight was diverted, and one airborne flight was held for 24 minutes. ”
SpaceX has become accustomed to mishap investigations by the FAA, as they have been impacted by them on several occasions in the past, including on Flight 8. However, they are a precautionary measure and usually are resolved within a few weeks.
Flight 9 was one of SpaceX’s most eventful, as there were several discoveries during the launch. First, it was SpaceX’s first time reusing a Super Heavy booster, as the one utilized for Flight 9 was also used on Flight 7 in January.
Contact with the booster and Starship were both lost during Flight 9. SpaceX said the booster was lost “shortly after the start of landing burn when it experienced a rapid unscheduled disassembly approximately 6 minutes after launch.”
Meanwhile, Starship was set to make a splashdown in the Indian Ocean, but the vehicle was lost about 46 minutes into the flight, SpaceX said in a mission recap.
It was an improvement from the previous two flights, as both 7 and 8 resulted in the loss of Starship after just a few minutes. Flight 9 lasted considerably longer. These flights are also not intended to make it to Mars, despite what other reports might try to tell you.
These are ways to gain information for when SpaceX eventually tries to get Starship to Mars.
Elon Musk
SpaceX Starship gets FAA nod for ninth test flight
The FAA has given the green light for Starship’s ninth test flight.

SpaceX has received FAA approval for the ninth test flight of the Starship rocket. The approval was delayed due to the federal agency finishing its comprehensive safety review of the eighth flight earlier this year.
The FAA said in a statement that it has determined that SpaceX has “satisfactorily addressed the causes of the mishap, and therefore, the Starship vehicle can return to flight.”
The eighth test flight occurred back on March 6. SpaceX completed a successful liftoff of Starship and the Super Heavy Booster, before the two entered stage separation a few minutes after launch.
Starship Flight 8: SpaceX nails Super Heavy booster catch but loses upper stage
The booster returned and was caught by the chopsticks on the launch pad, completing the second successful booster catch in the program’s history. However, SpaceX lost contact with Starship in the upper atmosphere.
The ship broke up and reentered the atmosphere over Florida and the Bahamas.
The debris situation caused the FAA to initiate a mishap investigation:
Starship Flight 8’s Ship 34 provided some beautiful fireworks in the sky during its rapid unscheduled disassembly. Beautiful but unfortunate.
Hopefully, Flight 9 would no longer have any RUD incidents. pic.twitter.com/p4qAToDXOM
— TESLARATI (@Teslarati) March 7, 2025
The FAA said it will verify that SpaceX implements all the corrective actions on Flight 9 that it discovered during the mishap investigation.
There is no current confirmed launch window, but the earliest it could take off from Starbase is Tuesday, May 27, at 6:30 p.m. local time.
To prevent any injuries and potentially limit any damage, the FAA has stayed in contact with various countries that could be impacted if another loss of vehicle occurs:
“The FAA is in close contact and collaboration with the United Kingdom, Turks & Caicos Islands, Bahamas, Mexico, and Cuba as the agency continues to monitor SpaceX’s compliance with all public safety and other regulatory requirements.”
The agency has also stated that the Aircraft Hazard Area (AHA) is approximately 1,600 nautical miles and extends eastward from the Starbase, Texas, launch site through the Straits of Florida, including the Bahamas and Turks & Caicos.
For flight 8, the AHA was just 885 nautical miles.
-
News1 week ago
Tesla to lose 64 Superchargers on New Jersey Turnpike in controversial decision
-
News2 weeks ago
Tesla gets major upgrade that Apple users will absolutely love
-
News2 weeks ago
Tesla teases new color while testing refreshed Model S, X
-
Elon Musk2 weeks ago
Tesla investors demand 40-hour workweek from Elon Musk
-
Elon Musk7 days ago
Elon Musk explains Tesla’s domestic battery strategy
-
News2 weeks ago
Tesla Cybertrucks join Jalisco’s police fleet ahead of FIFA World Cup
-
News2 weeks ago
Tesla rolls out new crucial safety feature aimed at saving children
-
News2 weeks ago
Tesla’s apparent affordable model zips around Fremont test track