Connect with us

News

Firefly launches world’s largest carbon fiber rocket into orbit on second try

Firefly's carbon-fiber Alpha rocket has successfully reached orbit on its second try. (Firefly - Everyday Astronaut)

Published

on

Firefly Aerospace’s Alpha rocket has successfully reached orbit on its second try, cementing the company as the victor of a mostly unintentional race between three American NewSpace startups.

After weeks of delays and three aborted launch attempts on September 11th, 12th, and 30th, the second carbon-fiber Alpha rocket lifted off from its Vandenberg Space Force Base (VSFB) SLC-2W launch pad at 12:01 am PDT (07:01 UTC) on October 1st. According to Firefly, the resulting mission was a “100%…success”, indicating that it achieved all of the company’s objectives – an outcome far from guaranteed on the second flight of any orbital rocket.

In a familiar display, Alpha’s suborbital booster lifted the upper stage, fairing, and payload most of the way out of the Earth’s atmosphere within a few minutes. After a mechanical system pushed the two stages apart, the upper stage successfully ignited its lone Lightning engine, ejected the two-piece fairing (nose cone) protecting its payloads, and continued uphill for another five minutes before reaching a stable parking orbit around 250 kilometers (~160 mi) above Earth’s surface.

After successfully reaching orbit, Alpha’s upper stage even made it through a more than 90-minute coast phase and reignited for a brief second burn. Finally, Alpha managed to deploy all seven of the satellites it lifted off with. As a test flight, there was no guarantee that those payloads would end up anywhere other than the Pacific Ocean, so the successful deployment was likely a very pleasant surprise for all satellite operators involved in the mission.

Nicknamed “Into The Black” by Firefly, it was the company’s second Alpha flight and followed an unsuccessful attempt on September 3rd, 2021. During the rocket’s first launch, a loose cable caused one of its booster’s four main Reaver engines to fail almost immediately after liftoff, dooming the attempt. However, the rest of the booster fought for more than two minutes to keep the mission on track before a termination system destroyed the rocket, demonstrating otherwise excellent performance and gathering invaluable data and experience.

Advertisement
-->
https://www.youtube.com/watch?v=qFjoPw0CfAU

Firefly wasted no time putting that experience to good use. Compared to the first vehicle, the booster and upper stage for Alpha’s second flight sailed through preflight testing and completed their respective proof tests (a combined wet dress rehearsal and static fire) on their first tries. That smooth processing bodes well for the timing of Firefly’s third Alpha launch, although the company’s official accounts have strangely been almost silent after Flight 2’s success.

Soon after launch, third-party data showed that Alpha deployed its seven payloads into a 210 x 270 kilometer (130 x 170 mi) orbit. Firefly’s official launch page had stated that the target orbit was 300 kilometers (~185 mi) and called the second ignition of the upper stage a “circularization burn.” Given that the final orbit is far from circular and has an apogee a full 10% below that stated target, it wasn’t clear the rocket had performed exactly as expected. The orbit’s very low perigee means that the customer satellites Alpha deployed could reenter Earth’s atmosphere and burn up after a matter of weeks in space, rather than months or years.

But according to Bill Weber, who became CEO of Firefly less than a month before the launch, Alpha “deployed [Firefly’s] customer payloads at exactly the spot [the company] intended,” strongly implying that the strange final orbit was intentional.

Additionally, official footage Firefly released after the launch suggests that Alpha’s upper stage Lightning engine nozzle narrowly missed the booster’s interstage during stage separation. Had the drifting booster hit that nozzle, it would have likely caused the upper stage to begin tumbling and potentially ended the mission well before orbit. Thankfully, it didn’t, and it should be relatively easy to fix whatever caused the Alpha booster to begin slipping sideways so quickly after separation.

Alpha is the largest all-carbon-fiber rocket ever built. It stands 29.5 meters (~95 ft) tall, 1.8 meters (6 ft) wide, weighs 54 tons (~120,000 lb) fully fueled, and can produce up 81 tons of thrust (~180,000 lbf). Alpha can launch up to 1.17 tons ~(2600 lb) of useful cargo to low Earth orbit (LEO), making it the first successful entrant in a new and rapidly growing field of privately-developed rockets designed to launch 1-2 tons to orbit.

Advertisement
-->

Coincidentally, Firefly found itself neck and neck with two other prospective US providers, Relativity Space and ABL Space. For several months, all three companies were aiming to successfully launch their one-ton-class rockets to orbit sometime in the late summer or early fall. But despite delays, Firefly – already more than a year ahead after its first launch attempt in 2021 – still beat Relativity and ABL Space to flight and did so successfully, securing itself a small but significant milestone in the history of private spaceflight.

The timeline for Relativity’s first 3D-printed Terran-1 rocket launch is no longer clear after a hurricane disrupted its preflight test campaign. ABL Space, meanwhile, has been forced to sit with its first RS1 rocket ready to launch for weeks while waiting on the FAA to complete paperwork and grant it a launch license. Had the FAA moved faster, it’s entirely possible that ABL Space could have launched before Firefly’s Alpha Flight 2, although the odds of success are much lower for RS1 during its debut. Pending that regulatory approval, ABL Space intends to launch RS1 out of Kodiak, Alaska as early as mid-October.

Firefly has yet to offer a substantial statement after the successful launch, which means that the company has provided no information about its next steps or next launch. Per prior statements, the company is working to upgrade its Texas factory to enable up to six Alpha launches in 2023.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025

According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.

Published

on

Credit: ANCAP

The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.

According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.

The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring. 

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.

The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.  

ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.

Advertisement
-->

“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.

“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.

Continue Reading

News

Tesla Sweden uses Megapack battery to bypass unions’ Supercharger blockade

Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery.

Published

on

Credit: Tesla Charging/X

Tesla Sweden has successfully launched a new Supercharger station despite an ongoing blockade by Swedish unions, using on-site Megapack batteries instead of traditional grid connections. The workaround has allowed the Supercharger to operate without direct access to Sweden’s electricity network, which has been effectively frozen by labor action.

Tesla has experienced notable challenges connecting its new charging stations to Sweden’s power grid due to industrial action led by Seko, a major Swedish trade union, which has blocked all new electrical connections for new Superchargers. On paper, this made the opening of new Supercharger sites almost impossible.

Despite the blockade, Tesla has continued to bring stations online. In Malmö and Södertälje, new Supercharger locations opened after grid operators E.ON and Telge Nät activated the sites. The operators later stated that the connections had been made in error. 

More recently, however, Tesla adopted a different strategy altogether. Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery, as noted in a Dagens Arbete (DA) report. 

Because the Supercharger station does not rely on a permanent grid connection, Tesla was able to bypass the blocked application process, as noted by Swedish car journalist and YouTuber Peter Esse. He noted that the Arlandastad Supercharger is likely dependent on nearby companies to recharge the batteries, likely through private arrangements.

Advertisement
-->

Eight new charging stalls have been launched in the Arlandastad site so far, which is a fraction of the originally planned 40 chargers for the location. Still, the fact that Tesla Sweden was able to work around the unions’ efforts once more is impressive, especially since Superchargers are used even by non-Tesla EVs.

Esse noted that Tesla’s Megapack workaround is not as easily replicated in other locations. Arlandastad is unique because neighboring operators already have access to grid power, making it possible for Tesla to source electricity indirectly. Still, Esse noted that the unions’ blockades have not affected sales as much.

“Many want Tesla to lose sales due to the union blockades. But you have to remember that sales are falling from 2024, when Tesla sold a record number of cars in Sweden. That year, the unions also had blockades against Tesla. So for Tesla as a charging operator, it is devastating. But for Tesla as a car company, it does not matter in terms of sales volumes. People charge their cars where there is an opportunity, usually at home,” Esse noted. 

Advertisement
-->
Continue Reading

Elon Musk

Elon Musk’s X goes down as users report major outage Friday morning

Error messages and stalled loading screens quickly spread across the service, while outage trackers recorded a sharp spike in user reports.

Published

on

Credit: Linda Yaccarino/X

Elon Musk’s X experienced an outage Friday morning, leaving large numbers of users unable to access the social media platform.

Error messages and stalled loading screens quickly spread across the service, while outage trackers recorded a sharp spike in user reports.

Downdetector reports

Users attempting to open X were met with messages such as “Something went wrong. Try reloading,” often followed by an endless spinning icon that prevented access, according to a report from Variety. Downdetector data showed that reports of problems surged rapidly throughout the morning.

As of 10:52 a.m. ET, more than 100,000 users had reported issues with X. The data indicated that 56% of complaints were tied to the mobile app, while 33% were related to the website and roughly 10% cited server connection problems. The disruption appeared to begin around 10:10 a.m. ET, briefly eased around 10:35 a.m., and then returned minutes later.

Credit: Downdetector

Previous disruptions

Friday’s outage was not an isolated incident. X has experienced multiple high-profile service interruptions over the past two years. In November, tens of thousands of users reported widespread errors, including “Internal server error / Error code 500” messages. Cloudflare-related error messages were also reported.

In March 2025, the platform endured several brief outages spanning roughly 45 minutes, with more than 21,000 reports in the U.S. and 10,800 in the U.K., according to Downdetector. Earlier disruptions included an outage in August 2024 and impairments to key platform features in July 2023.

Advertisement
-->
Continue Reading