News
Firefly launches world’s largest carbon fiber rocket into orbit on second try
Firefly Aerospace’s Alpha rocket has successfully reached orbit on its second try, cementing the company as the victor of a mostly unintentional race between three American NewSpace startups.
After weeks of delays and three aborted launch attempts on September 11th, 12th, and 30th, the second carbon-fiber Alpha rocket lifted off from its Vandenberg Space Force Base (VSFB) SLC-2W launch pad at 12:01 am PDT (07:01 UTC) on October 1st. According to Firefly, the resulting mission was a “100%…success”, indicating that it achieved all of the company’s objectives – an outcome far from guaranteed on the second flight of any orbital rocket.
In a familiar display, Alpha’s suborbital booster lifted the upper stage, fairing, and payload most of the way out of the Earth’s atmosphere within a few minutes. After a mechanical system pushed the two stages apart, the upper stage successfully ignited its lone Lightning engine, ejected the two-piece fairing (nose cone) protecting its payloads, and continued uphill for another five minutes before reaching a stable parking orbit around 250 kilometers (~160 mi) above Earth’s surface.
After successfully reaching orbit, Alpha’s upper stage even made it through a more than 90-minute coast phase and reignited for a brief second burn. Finally, Alpha managed to deploy all seven of the satellites it lifted off with. As a test flight, there was no guarantee that those payloads would end up anywhere other than the Pacific Ocean, so the successful deployment was likely a very pleasant surprise for all satellite operators involved in the mission.
Nicknamed “Into The Black” by Firefly, it was the company’s second Alpha flight and followed an unsuccessful attempt on September 3rd, 2021. During the rocket’s first launch, a loose cable caused one of its booster’s four main Reaver engines to fail almost immediately after liftoff, dooming the attempt. However, the rest of the booster fought for more than two minutes to keep the mission on track before a termination system destroyed the rocket, demonstrating otherwise excellent performance and gathering invaluable data and experience.
Firefly wasted no time putting that experience to good use. Compared to the first vehicle, the booster and upper stage for Alpha’s second flight sailed through preflight testing and completed their respective proof tests (a combined wet dress rehearsal and static fire) on their first tries. That smooth processing bodes well for the timing of Firefly’s third Alpha launch, although the company’s official accounts have strangely been almost silent after Flight 2’s success.
Soon after launch, third-party data showed that Alpha deployed its seven payloads into a 210 x 270 kilometer (130 x 170 mi) orbit. Firefly’s official launch page had stated that the target orbit was 300 kilometers (~185 mi) and called the second ignition of the upper stage a “circularization burn.” Given that the final orbit is far from circular and has an apogee a full 10% below that stated target, it wasn’t clear the rocket had performed exactly as expected. The orbit’s very low perigee means that the customer satellites Alpha deployed could reenter Earth’s atmosphere and burn up after a matter of weeks in space, rather than months or years.
But according to Bill Weber, who became CEO of Firefly less than a month before the launch, Alpha “deployed [Firefly’s] customer payloads at exactly the spot [the company] intended,” strongly implying that the strange final orbit was intentional.
Additionally, official footage Firefly released after the launch suggests that Alpha’s upper stage Lightning engine nozzle narrowly missed the booster’s interstage during stage separation. Had the drifting booster hit that nozzle, it would have likely caused the upper stage to begin tumbling and potentially ended the mission well before orbit. Thankfully, it didn’t, and it should be relatively easy to fix whatever caused the Alpha booster to begin slipping sideways so quickly after separation.
Alpha is the largest all-carbon-fiber rocket ever built. It stands 29.5 meters (~95 ft) tall, 1.8 meters (6 ft) wide, weighs 54 tons (~120,000 lb) fully fueled, and can produce up 81 tons of thrust (~180,000 lbf). Alpha can launch up to 1.17 tons ~(2600 lb) of useful cargo to low Earth orbit (LEO), making it the first successful entrant in a new and rapidly growing field of privately-developed rockets designed to launch 1-2 tons to orbit.
Coincidentally, Firefly found itself neck and neck with two other prospective US providers, Relativity Space and ABL Space. For several months, all three companies were aiming to successfully launch their one-ton-class rockets to orbit sometime in the late summer or early fall. But despite delays, Firefly – already more than a year ahead after its first launch attempt in 2021 – still beat Relativity and ABL Space to flight and did so successfully, securing itself a small but significant milestone in the history of private spaceflight.
The timeline for Relativity’s first 3D-printed Terran-1 rocket launch is no longer clear after a hurricane disrupted its preflight test campaign. ABL Space, meanwhile, has been forced to sit with its first RS1 rocket ready to launch for weeks while waiting on the FAA to complete paperwork and grant it a launch license. Had the FAA moved faster, it’s entirely possible that ABL Space could have launched before Firefly’s Alpha Flight 2, although the odds of success are much lower for RS1 during its debut. Pending that regulatory approval, ABL Space intends to launch RS1 out of Kodiak, Alaska as early as mid-October.
Firefly has yet to offer a substantial statement after the successful launch, which means that the company has provided no information about its next steps or next launch. Per prior statements, the company is working to upgrade its Texas factory to enable up to six Alpha launches in 2023.
Cybertruck
Tesla updates Cybertruck owners about key Powershare feature
Tesla is updating Cybertruck owners on its timeline of a massive feature that has yet to ship: Powershare with Powerwall.
Powershare is a bidirectional charging feature exclusive to Cybertruck, which allows the vehicle’s battery to act as a portable power source for homes, appliances, tools, other EVs, and more. It was announced in late 2023 as part of Tesla’s push into vehicle-to-everything energy sharing, and acting as a giant portable charger is the main advantage, as it can provide backup power during outages.
Cybertruck’s Powershare system supports both vehicle-to-load (V2L) and vehicle-to-home (V2H), making it flexible and well-rounded for a variety of applications.
However, even though the feature was promised with Cybertruck, it has yet to be shipped to vehicles. Tesla communicated with owners through email recently regarding Powershare with Powerwall, which essentially has the pickup act as an extended battery.
Powerwall discharge would be prioritized before tapping into the truck’s larger pack.
However, Tesla is still working on getting the feature out to owners, an email said:
“We’re writing to let you know that the Powershare with Powerwall feature is still in development and is now scheduled for release in mid-2026.
This new release date gives us additional time to design and test this feature, ensuring its ability to communicate and optimize energy sharing between your vehicle and many configurations and generations of Powerwall. We are also using this time to develop additional Powershare features that will help us continue to accelerate the world’s transition to sustainable energy.”
Owners have expressed some real disappointment in Tesla’s continuous delays in releasing the feature, as it was expected to be released by late 2024, but now has been pushed back several times to mid-2026, according to the email.
Foundation Series Cybertruck buyers paid extra, expecting the feature to be rolled out with their vehicle upon pickup.
Cybertruck’s Lead Engineer, Wes Morrill, even commented on the holdup:
As a Cybertruck owner who also has Powerwall, I empathize with the disappointed comments.
To their credit, the team has delivered powershare functionality to Cybertruck customers who otherwise have no backup with development of the powershare gateway. As well as those with solar…
— Wes (@wmorrill3) December 12, 2025
He said that “it turned out to be much harder than anticipated to make powershare work seamlessly with existing Powerwalls through existing wall connectors. Two grid-forming devices need to negotiate who will form and who will follow, depending on the state of charge of each, and they need to do this without a network and through multiple generations of hardware, and test and validate this process through rigorous certifications to ensure grid safety.”
It’s nice to see the transparency, but it is justified for some Cybertruck owners to feel like they’ve been bait-and-switched.
News
Tesla’s northernmost Supercharger in North America opens
Tesla has opened its northernmost Supercharger in Fairbanks, Alaska, with eight V4 stalls located in one of the most frigid cities in the U.S.
Located just 196 miles from the Arctic Circle, Fairbanks’s average temperature for the week was around -12 degrees Fahrenheit. However, there are plenty of Tesla owners in Alaska who have been waiting for more charging options out in public.
There are only 36 total Supercharger stalls in Alaska, despite being the largest state in the U.S.
Eight Superchargers were added to Fairbanks, which will eventually be a 48-stall station. Tesla announced its activation today:
North America’s northernmost Supercharger Fairbanks, AK (8 stalls) opened to public. https://t.co/M4l04DZ6B5 pic.twitter.com/zyL6bDuA93
— Tesla Charging (@TeslaCharging) December 12, 2025
The base price per kWh is $0.43 at the Fairbanks Supercharger. Thanks to its V4 capabilities, it can charge at speeds up to 325 kW.
Despite being the northernmost Supercharger in North America, it is not even in the Top 5 northernmost Superchargers globally, because Alaska is south of Norway. The northernmost Supercharger is in Honningsvåg, Norway. All of the Top 5 are in the Scandanavian country.
Tesla’s Supercharger expansion in 2025 has been impressive, and although it experienced some early-quarter slowdowns due to V3-to-V4 hardware transitions, it has been the company’s strongest year for deployments.
🚨🚨 Tesla Supercharging had a HUGE year, and they deserve to be recognized.
🍔 Opened Tesla Diner, a drive-in movie theater with awesome, Chef-curated cuisine
🔌 Gave access to Superchargers to several EV makers, including Hyundai, Genesis, Mercedes-Benz, Kia, Lucid, Toyota,… pic.twitter.com/yYT2QEbqoW
— TESLARATI (@Teslarati) December 10, 2025
Through the three quarters of 2025, the company has added 7,753 stations and 73,817 stalls across the world, a 16 percent increase in stations and an 18 percent increase in stalls compared to last year.
Tesla is on track to add over 12,000 stalls for the full year, achieving an average of one new stall every hour, an impressive statistic.
Recently, the company wrapped up construction at its Supercharger Oasis in Lost Hills, California, a 168-stall Supercharger that Tesla Solar Panels completely power. It is the largest Supercharger in the world.
News
Tesla shocks with latest Robotaxi testing move
Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”
Tesla Model S vehicles were spotted performing validation testing with LiDAR rigs in California today, a pretty big switch-up compared to what we are used to seeing on the roads.
Tesla utilizes the Model Y crossover for its Robotaxi fleet. It is adequately sized, the most popular vehicle in its lineup, and is suitable for a wide variety of applications. It provides enough luxury for a single rider, but enough room for several passengers, if needed.
However, the testing has seemingly expanded to one of Tesla’s premium flagship offerings, as the Model S was spotted with the validation equipment that is seen entirely with Model Y vehicles. We have written several articles on Robotaxi testing mules being spotted across the United States, but this is a first:
🚨 Tesla is using Model S vehicles fitted with LiDAR rigs to validate FSD and Robotaxi, differing from the Model Ys that it uses typically
Those Model Y vehicles have been on the East Coast for some time. These Model S cars were spotted in California https://t.co/CN9Bw5Wma8 pic.twitter.com/UE55hx5mdd
— TESLARATI (@Teslarati) December 11, 2025
Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”
It seems to hint that Tesla could add a premium, more luxury offering to its Robotaxi platform eventually. Think about it: Uber has Uber Black, Lyft has Lyft Black. These vehicles and services are associated with a more premium cost as they combine luxury models with more catered transportation options.
Tesla could be testing the waters here, and it could be thinking of adding the Model S to its fleet of ride-hailing vehicles.
Reluctant to remove the Model S from its production plans completely despite its low volume contributions to the overall mission of transitioning the world to sustainable energy, the flagship sedan has always meant something. CEO Elon Musk referred to it, along with its sibling Model X, as continuing on production lines due to “sentimental reasons.”
However, its purpose might have been expanded to justify keeping it around, and why not? It is a cozy, premium offering, and it would be great for those who want a little more luxury and are willing to pay a few extra dollars.
Of course, none of this is even close to confirmed. However, it is reasonable to speculate that the Model S could be a potential addition to the Robotaxi fleet. It’s capable of all the same things the Model Y is, but with more luxuriousness, and it could be the perfect addition to the futuristic fleet.