News
Firefly launches world’s largest carbon fiber rocket into orbit on second try
Firefly Aerospace’s Alpha rocket has successfully reached orbit on its second try, cementing the company as the victor of a mostly unintentional race between three American NewSpace startups.
After weeks of delays and three aborted launch attempts on September 11th, 12th, and 30th, the second carbon-fiber Alpha rocket lifted off from its Vandenberg Space Force Base (VSFB) SLC-2W launch pad at 12:01 am PDT (07:01 UTC) on October 1st. According to Firefly, the resulting mission was a “100%…success”, indicating that it achieved all of the company’s objectives – an outcome far from guaranteed on the second flight of any orbital rocket.
In a familiar display, Alpha’s suborbital booster lifted the upper stage, fairing, and payload most of the way out of the Earth’s atmosphere within a few minutes. After a mechanical system pushed the two stages apart, the upper stage successfully ignited its lone Lightning engine, ejected the two-piece fairing (nose cone) protecting its payloads, and continued uphill for another five minutes before reaching a stable parking orbit around 250 kilometers (~160 mi) above Earth’s surface.
After successfully reaching orbit, Alpha’s upper stage even made it through a more than 90-minute coast phase and reignited for a brief second burn. Finally, Alpha managed to deploy all seven of the satellites it lifted off with. As a test flight, there was no guarantee that those payloads would end up anywhere other than the Pacific Ocean, so the successful deployment was likely a very pleasant surprise for all satellite operators involved in the mission.
Nicknamed “Into The Black” by Firefly, it was the company’s second Alpha flight and followed an unsuccessful attempt on September 3rd, 2021. During the rocket’s first launch, a loose cable caused one of its booster’s four main Reaver engines to fail almost immediately after liftoff, dooming the attempt. However, the rest of the booster fought for more than two minutes to keep the mission on track before a termination system destroyed the rocket, demonstrating otherwise excellent performance and gathering invaluable data and experience.
Firefly wasted no time putting that experience to good use. Compared to the first vehicle, the booster and upper stage for Alpha’s second flight sailed through preflight testing and completed their respective proof tests (a combined wet dress rehearsal and static fire) on their first tries. That smooth processing bodes well for the timing of Firefly’s third Alpha launch, although the company’s official accounts have strangely been almost silent after Flight 2’s success.
Soon after launch, third-party data showed that Alpha deployed its seven payloads into a 210 x 270 kilometer (130 x 170 mi) orbit. Firefly’s official launch page had stated that the target orbit was 300 kilometers (~185 mi) and called the second ignition of the upper stage a “circularization burn.” Given that the final orbit is far from circular and has an apogee a full 10% below that stated target, it wasn’t clear the rocket had performed exactly as expected. The orbit’s very low perigee means that the customer satellites Alpha deployed could reenter Earth’s atmosphere and burn up after a matter of weeks in space, rather than months or years.
But according to Bill Weber, who became CEO of Firefly less than a month before the launch, Alpha “deployed [Firefly’s] customer payloads at exactly the spot [the company] intended,” strongly implying that the strange final orbit was intentional.
Additionally, official footage Firefly released after the launch suggests that Alpha’s upper stage Lightning engine nozzle narrowly missed the booster’s interstage during stage separation. Had the drifting booster hit that nozzle, it would have likely caused the upper stage to begin tumbling and potentially ended the mission well before orbit. Thankfully, it didn’t, and it should be relatively easy to fix whatever caused the Alpha booster to begin slipping sideways so quickly after separation.
Alpha is the largest all-carbon-fiber rocket ever built. It stands 29.5 meters (~95 ft) tall, 1.8 meters (6 ft) wide, weighs 54 tons (~120,000 lb) fully fueled, and can produce up 81 tons of thrust (~180,000 lbf). Alpha can launch up to 1.17 tons ~(2600 lb) of useful cargo to low Earth orbit (LEO), making it the first successful entrant in a new and rapidly growing field of privately-developed rockets designed to launch 1-2 tons to orbit.
Coincidentally, Firefly found itself neck and neck with two other prospective US providers, Relativity Space and ABL Space. For several months, all three companies were aiming to successfully launch their one-ton-class rockets to orbit sometime in the late summer or early fall. But despite delays, Firefly – already more than a year ahead after its first launch attempt in 2021 – still beat Relativity and ABL Space to flight and did so successfully, securing itself a small but significant milestone in the history of private spaceflight.
The timeline for Relativity’s first 3D-printed Terran-1 rocket launch is no longer clear after a hurricane disrupted its preflight test campaign. ABL Space, meanwhile, has been forced to sit with its first RS1 rocket ready to launch for weeks while waiting on the FAA to complete paperwork and grant it a launch license. Had the FAA moved faster, it’s entirely possible that ABL Space could have launched before Firefly’s Alpha Flight 2, although the odds of success are much lower for RS1 during its debut. Pending that regulatory approval, ABL Space intends to launch RS1 out of Kodiak, Alaska as early as mid-October.
Firefly has yet to offer a substantial statement after the successful launch, which means that the company has provided no information about its next steps or next launch. Per prior statements, the company is working to upgrade its Texas factory to enable up to six Alpha launches in 2023.
News
Luminar-Volvo breakdown deepens as lidar maker warns of potential bankruptcy
The automaker stated that Luminar failed to meet contractual obligations.
Luminar’s largest customer, Volvo, has canceled a key five-year contract as the lidar supplier warned investors that it might be forced to file for bankruptcy. The automaker stated that Luminar failed to meet contractual obligations, escalating a dispute already unfolding as Luminar defaults on loans, undergoes layoffs, and works to sell portions of the business.
Volvo pulls back on Luminar
In a statement to TechCrunch, Volvo stated that Luminar’s failure to deliver its contractual obligations was a key driver of the cancellation of the contract. “Volvo Cars has made this decision to limit the company’s supply chain risk exposure and it is a direct result of Luminar’s failure to meet its contractual obligations to Volvo Cars,” Volvo noted in a statement.
The rift marked a notable turn for the two companies, whose relationship dates back several years. Volvo invested in Luminar early and helped push its sensors into production programs, while Luminar’s technology bolstered the credibility of Volvo’s safety-focused autonomous driving plans. Volvo’s partnership also supported Luminar’s 2020 SPAC listing, which briefly made founder Austin Russell one of the youngest self-made billionaires in the industry.
Damaged Volvo relations
The damaged Volvo partnership comes during a critical period for Luminar. The company has defaulted on several loans and warned investors that bankruptcy remains a possibility if restructuring discussions fall through. To conserve cash, Luminar has cut 25% of its workforce and is exploring strategic alternatives, including partial or full asset sales.
One potential buyer is founder Austin Russell, who resigned as CEO in May amid a board-initiated ethics inquiry. The company is also the subject of an ongoing SEC investigation.
Luminar, for its part, also noted in a filing that it had “made a claim against Volvo for significant damages” and “suspended further commitments of Iris” for the carmaker. “The Company is in discussions with Volvo concerning the dispute; however, there can be no assurance that the dispute will be resolved favorably or at all,” the lidar maker stated.
News
Elon Musk says he’s open to powering Apple’s Siri with xAI’s Grok
Siri, one of the first intelligent AI assistants in the market, has become widely outdated and outperformed by rivals over the years.
Elon Musk says he’s willing to help Apple overhaul Siri by integrating xAI’s Grok 4.1, igniting widespread excitement and speculations about a potential collaboration between the two tech giants.
Siri, one of the first intelligent AI assistants in the market, has become widely outdated and outperformed by rivals over the years.
Musk open to an Apple collaboration
Musk’s willingness to team up with Apple surfaced after an X user suggested replacing Siri with Grok 4.1 to modernize the AI assistant. The original post criticized Siri’s limitations and urged Apple to adopt a more advanced AI system. “It’s time for Apple to team up with xAI and actually fix Siri. Replace that outdated, painfully dumb assistant with Grok 4.1. Siri deserves to be Superintelligent,” the X user wrote.
Musk quoted the post, responding with, “I’m down.” Musk’s comment quickly attracted a lot of attention among X’s users, many of whom noted that a Grok update to Siri would be appreciated because Apple’s AI assistant has legitimately become terrible in recent years. Others also noted that Grok, together with Apple’s potential integration of Starlink connectivity, would make iPhones even more compelling.
Grok promises major Siri upgrades
The enthusiasm stems largely from Grok 4.1’s technical strengths, which include stronger reasoning and improved creative output. xAI also designed the model to reduce hallucinations, as noted in a Reality Tea report. Supporters believe these improvements could address Apple’s reported challenges developing its own advanced AI systems, giving Siri the upgrade many users have waited years for.
Reactions ranged from humorous to hopeful, with some users joking that Siri would finally “wake up with a personality” if paired with Grok. Siri, after all, was a trailblazer in voice assistants, but it is currently dominated by rivals in terms of features and capabilities. Grok could change that, provided that Apple is willing to collaborate with Elon Musk’s xAI.
News
Tesla’s top-rated Supercharger Network becomes Stellantis’ new key EV asset
The rollout begins in North America early next year before expanding to Japan and South Korea in 2027.
Stellantis will adopt Tesla’s North American Charging System (NACS) across select battery-electric vehicles starting in 2026, giving customers access to more than 28,000 Tesla Superchargers across five countries.
The rollout begins in North America early next year before expanding to Japan and South Korea in 2027, significantly boosting public fast-charging access for Jeep, Dodge, and other Stellantis brands. The move marks one of Stellantis’ largest infrastructure expansions to date.
Stellantis unlocks NACS access
Beginning in early 2026, Stellantis BEVs, including models like the Jeep Wagoneer S and Dodge Charger Daytona, will gain access to Tesla’s Supercharger network across North America. The integration will extend to Japan and South Korea in 2027, with the 2026 Jeep Recon and additional next-generation BEVs joining the list as compatibility expands. Stellantis stated that details on adapters and network onboarding for current models will be released closer to launch, as noted in a press release.
The company emphasizes that adopting NACS aligns with a broader strategy to give customers greater freedom of choice when charging, especially as infrastructure availability becomes a deciding factor for EV buyers. With access to thousands of high-speed stations, Stellantis aims to reduce range anxiety and improve long-distance travel convenience across its global portfolio.
Tesla Supercharger network proves its value
Stellantis’ move also comes as Tesla’s Supercharger system continues to earn top rankings for reliability and user experience. In the 2025 Zapmap survey, drawn from nearly 4,000 BEV drivers across the UK, Tesla Superchargers were named the Best Large EV Charging Network for the second year in a row. The study measured reliability, ease of use, and payment experience across the country’s public charging landscape.
Tesla’s UK network now includes 1,115 open Supercharger devices at 97 public locations, representing roughly 54% of its total footprint and marking a 40% increase in public availability since late 2024. Zapmap highlighted the Supercharger network’s consistently lower pricing compared to other rapid and ultra-rapid providers, alongside its strong uptime and streamlined user experience. These performance metrics further reinforce the value of Stellantis’ decision to integrate NACS across major markets.