Connect with us

News

Mars rover to Earth, this red planet has a methane problem

NASAs Mars Curiosity Rover takes a selfie in the middle of a massive storm. [Credit: Seán Doran/Flickr]

Published

on

NASA’s Curiosity rover has been exploring an area of Mars called Gale Crater, since landing on the red planet in 2012. It was tasked with assessing the habitability of Mars. What was Mars like in the past? Were the conditions right for life?

Let’s be clear, Curiosity was not equipped with the instruments needed to identify life forms, but it can tell us if conditions were right for life to have survived.

Throughout its time on the red planet, Curiosity has discovered a bit of an enigma: Mars has methane and the abundance changes with the seasons. Big surges of methane can indicate that some sort of biological process is taking place, but that’s not always the case. And it’s not a definitive sign of life.

Methane is a gas produced by one of two methods on Earth: biological and geological. That means that some sort of life form could be producing or perhaps there’s some sort of geological explanation.

Advertisement
-->

This is puzzling to scientists back on Earth because the Martian methane has been detected by ground-based telescopes. But recent orbital data from Mars shows the minuscule amounts of methane are gone.

In fact, the Trace Gas Orbiter (TGO)—a joint European and Russian missionwhich launched in 2016 and was designed to sniff-out trace gases, such as methane, says the Martian air is basically methane-free.

But, NASA’s Curiosity rover may have just taken a big step forward in understanding this conundrum.

Possible sources and sinks of methane on Mars. Credit: NASA

Curiosity’s detection of methane is nothing new. The six-wheeled rover has detected surges in methane throughout its mission. The most recent occurrence, recorded in June 2019, showed staggeringly high levels of methane—21 ppb (parts per billion). That’s the highest the rover has recorded to date.

Neither TGO nor its counterpart, the Mars Express orbiter, detected any methane at all in June.

TGO has detected minute amounts of methane—around 0.012 ppb—during its first few months of science operations. That’s equivalent to roughly 30 times less than what Curiosity sees. (Mars Express did detect the first methane surge that Curiosity spotted in June 2013.)

Advertisement
-->

Why is there such a discrepancy between ground measurements and orbital data? The Curiosity science team has a few ideas.

Curiosity drills into the ground to analyze samples. Credit: NASA/JPL-Caltech

First off, there could be some sort of atmospheric process taking place that is scrubbing it out of the atmosphere. Curiosity takes measurements on the ground and detects the methane, while TGO orbits the planet and does not. This means that something happens to it as it travels upwards through the atmosphere.

Another explanation could be atmospheric expansion and contraction. Mars has an atmosphere, albeit an incredibly thin one compared to Earth’s. Every day the heat from the sun causes the atmosphere to expand and contract.

As the atmosphere expands during the day, the methane could become more diffuse. Since Curiosity measure methane at night, when the rover is less busy, it could explain why the methane appears more abundant. That means that the rover is sniffing the atmosphere when its more dense, which means the methane concentration would be greater.

NASA’s Curiosity rover detects seasonal changes in atmospheric methane in Gale Crater. The methane signal has been observed for nearly three Martian years (nearly six Earth years), peaking each summer. Credit: NASA/JPL-Caltech

The team plans to take some daytime methane measurements and compare those with orbital data. This will give the team some insights into why the data is so different. Once they have that puzzle solved, they can move onto larger questions, like what generates the methane?

It’s also entirely possible that the gas may have been generated billions of years ago in deep, underground pockets, and it’s just now seeping up through the bedrock. Only time and more measurements can tell.

NASA is sending its next-generation Mars rover to the red planet this July. Dubbed the Mars 2020 rover, the vehicle is a souped-up version of Curiosity. This rover will not only be able to look for biosignatures (or signs of life), it will also bag up samples for a future return to Earth.

Advertisement
-->

I write about space, science, and future tech.

Advertisement
Comments

News

Tesla’s northernmost Supercharger in North America opens

Published

on

Credit: Tesla

Tesla has opened its northernmost Supercharger in Fairbanks, Alaska, with eight V4 stalls located in one of the most frigid cities in the U.S.

Located just 196 miles from the Arctic Circle, Fairbanks’s average temperature for the week was around -12 degrees Fahrenheit. However, there are plenty of Tesla owners in Alaska who have been waiting for more charging options out in public.

There are only 36 total Supercharger stalls in Alaska, despite being the largest state in the U.S.

Eight Superchargers were added to Fairbanks, which will eventually be a 48-stall station. Tesla announced its activation today:

The base price per kWh is $0.43 at the Fairbanks Supercharger. Thanks to its V4 capabilities, it can charge at speeds up to 325 kW.

Despite being the northernmost Supercharger in North America, it is not even in the Top 5 northernmost Superchargers globally, because Alaska is south of Norway. The northernmost Supercharger is in Honningsvåg, Norway. All of the Top 5 are in the Scandanavian country.

Tesla’s Supercharger expansion in 2025 has been impressive, and although it experienced some early-quarter slowdowns due to V3-to-V4 hardware transitions, it has been the company’s strongest year for deployments.

Through the three quarters of 2025, the company has added 7,753 stations and 73,817 stalls across the world, a 16 percent increase in stations and an 18 percent increase in stalls compared to last year.

Tesla is on track to add over 12,000 stalls for the full year, achieving an average of one new stall every hour, an impressive statistic.

Advertisement
-->

Recently, the company wrapped up construction at its Supercharger Oasis in Lost Hills, California, a 168-stall Supercharger that Tesla Solar Panels completely power. It is the largest Supercharger in the world.

Continue Reading

News

Tesla hints toward Premium Robotaxi offering with Model S testing

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

Published

on

Credit: Sawyer Merritt | X

Tesla Model S vehicles were spotted performing validation testing with LiDAR rigs in California today, a pretty big switch-up compared to what we are used to seeing on the roads.

Tesla utilizes the Model Y crossover for its Robotaxi fleet. It is adequately sized, the most popular vehicle in its lineup, and is suitable for a wide variety of applications. It provides enough luxury for a single rider, but enough room for several passengers, if needed.

However, the testing has seemingly expanded to one of Tesla’s premium flagship offerings, as the Model S was spotted with the validation equipment that is seen entirely with Model Y vehicles. We have written several articles on Robotaxi testing mules being spotted across the United States, but this is a first:

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

It seems to hint that Tesla could add a premium, more luxury offering to its Robotaxi platform eventually. Think about it: Uber has Uber Black, Lyft has Lyft Black. These vehicles and services are associated with a more premium cost as they combine luxury models with more catered transportation options.

Tesla could be testing the waters here, and it could be thinking of adding the Model S to its fleet of ride-hailing vehicles.

Reluctant to remove the Model S from its production plans completely despite its low volume contributions to the overall mission of transitioning the world to sustainable energy, the flagship sedan has always meant something. CEO Elon Musk referred to it, along with its sibling Model X, as continuing on production lines due to “sentimental reasons.”

Advertisement
-->

However, its purpose might have been expanded to justify keeping it around, and why not? It is a cozy, premium offering, and it would be great for those who want a little more luxury and are willing to pay a few extra dollars.

Of course, none of this is even close to confirmed. However, it is reasonable to speculate that the Model S could be a potential addition to the Robotaxi fleet. It’s capable of all the same things the Model Y is, but with more luxuriousness, and it could be the perfect addition to the futuristic fleet.

Continue Reading

News

Rivian unveils self-driving chip and autonomy plans to compete with Tesla

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

Published

on

Credit: Rivian

Rivian unveiled its self-driving chip and autonomy plans to compete with Tesla and others at its AI and Autonomy Day on Thursday in Palo Alto, California.

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

CEO RJ Scaringe said it will learn and become more confident and robust as more miles are driven and it gathers more data. This is what Tesla uses through a neural network, as it uses deep learning to improve with every mile traveled.

He said:

“I couldn’t be more excited for the work our teams are driving in autonomy and AI. Our updated hardware platform, which includes our in-house 1600 sparse TOPS inference chip, will enable us to achieve dramatic progress in self-driving to ultimately deliver on our goal of delivering L4. This represents an inflection point for the ownership experience – ultimately being able to give customers their time back when in the car.”

Advertisement
-->

At first, Rivian plans to offer the service to personally-owned vehicles, and not operate as a ride-hailing service. However, ride-sharing is in the plans for the future, he said:

“While our initial focus will be on personally owned vehicles, which today represent a vast majority of the miles to the United States, this also enables us to pursue opportunities in the rideshare space.”

The Hardware

Rivian is not using a vision-only approach as Tesla does, and instead will rely on 11 cameras, five radar sensors, and a single LiDAR that will face forward.

It is also developing a chip in-house, which will be manufactured by TSMC, a supplier of Tesla’s as well. The chip will be known as RAP1 and will be about 50 times as powerful as the chip that is currently in Rivian vehicles. It will also do more than 800 trillion calculations every second.

RAP1 powers the Autonomy Compute Module 3, known as ACM3, which is Rivian’s third-generation autonomy computer.

ACM3 specs include:

  • 1600 sparse INT8 TOPS (Trillion Operations Per Second).
  • The processing power of 5 billion pixels per second.
  • RAP1 features RivLink, a low-latency interconnect technology allowing chips to be connected to multiply processing power, making it inherently extensible.
  • RAP1 is enabled by an in-house developed AI compiler and platform software

As far as LiDAR, Rivian plans to use it in forthcoming R2 cars to enable SAE Level 4 automated driving, which would allow people to sit in the back and, according to the agency’s ratings, “will not require you to take over driving.”

More Details

Rivian said it will also roll out advancements to the second-generation R1 vehicles in the near term with the addition of UHF, or Universal Hands-Free, which will be available on over 3.5 million miles of roadway in the U.S. and Canada.

Advertisement
-->

Rivian will now join the competitive ranks with Tesla, Waymo, Zoox, and others, who are all in the race for autonomy.

Advertisement
-->
Continue Reading