Connect with us

News

First sounds of wind on Mars captured by NASA’s Insight Lander

Published

on

This fresh in from the Elysium Planitia of Mars: the sound of wind from an alien world. On its 10th day as a new resident of the red planet, NASA’s InSight lander’s pressure sensor transmitted air vibration data from its trembling solar panels, representing a steady breeze about 99 million miles away. The combination of photos sent back from the craft with the sound of Martian wind gives Earth residents a unique moment to feel like they’ve joined the craft themselves. “It’s fun to imagine that I’m there,” mused Don Banfield during a JPL media teleconference discussing the recording. Banfield is InSight’s Auxiliary Payload Sensor Subsystem (APSS) Science Lead.

InSight, short for “Interior Exploration using Seismic Investigations, Geodesy and Heat Transport”, launched aboard an Atlas V rocket on May 5, 2018 and successfully landed on the Martian surface on November 26, 2018. The craft is a seismic investigator sent to study the red planet’s core, eventually drilling 10-16 feet down into its crust to gather geographical data. The craft’s landing event was live streamed online for viewers around the world, greeting Earthlings with a photo of its new home’s surface shortly after. It sent back more photos of the surrounding area prior to the wind recording.

The thin CO2 atmosphere on Mars doesn’t translate high sounds well, so the recorded vibrations from InSight’s pressure sensor are low on the audio spectrum, under 50 Hz, thus difficult to hear. However, after the frequency was increased by a factor of 100 (raised two octaves), it became possible to hear what sounds like a steady wind blowing across the regolith. Dust devils tracked in the area moving across the Martian surface had motion consistent with the wind recordings, thus confirming what was being heard by InSight’s scientists.

A recent photo sent back from InSight as it settles into its Martian habitat. The white dome pictured is covering the craft’s instruments. | Credit: NASA/JPL

The way InSight picks up and translates sound is similar to how a human ear works: Air pressure vibrates the eardrum, then that vibration pattern is sent through the inner ear bones to the cochlea which has tiny hairs translating the vibrations into electrical signals sent to the brain. InSight’s solar panels are like its eardrums, the spacecraft structure itself like its inner ear, its instruments like its cochlear, and its electronic box translating and transmitting signals is like brain. The “sounds” we hear from Mars are translated data from wind-caused vibrations.

Ironically enough, wind noise is actually not a particularly desired outcome from InSight’s instruments. According to the scientists participating in NASA’s teleconference discussing the event, the inlet for the pressure sensor was specifically designed to minimize any chatter from air movement. Also, the placement of InSight’s seismographic gear will be based on the best area to reduce input from the lander’s interaction with the vibrations it’s recording, i.e., the lander’s movement from seismic events. It should be noted, though, the Martian wind gracing our human ears for the first time is only a taste of what’s to come from InSight’s instruments.

Once the wind and thermal shield (the white dome in the photos) has been lifted from the lander in a few weeks, all of InSight’s instruments will be exposed to the Martian environment for data collection. For now, the lander’s Earth-based team is first focusing on understanding the area the craft is in to pick the best place to set its instruments. After the main mission begins, however, a full study of Mars’ atmosphere will be underway and we could hear, among other natural events, the sounds of exploding meteors.

Advertisement
-->
An artist’s depiction of InSight drilling on Mars. | Credit: NASA/JPL-Caltech

While wind may be a unique sound to hear on an alien world, it’s not the first time a NASA craft has entertained our ears and imaginations. Electromagnetic vibrations have been recorded all across our solar system, perhaps the most famous of which originated from the Voyager 1 spacecraft launched in 1977. The data collected from the craft’s radio-capturing instruments has been converted into audio files – you can even find a full album’s worth of the sounds on a variety of streaming sites. Some of the recordings are meditation-worthy, others a touch unnerving. We humans have additionally added some recordings of our own to space via Voyager’s famous “golden record”, the sounds of which are also available for listening online.

If you’re craving a full Martian soundtrack, you’ll be happy to know that NASA’s Mars 2020 rover is planned to provide just that. It will have two microphones on board, one of which will record the actual landing of the rover. Combined with telemetry data and surface photographs, Mars is on its way to its own documentary with inputs completely provided “on-location”. Stay tuned!

Listen to the Martian wind yourself below:

Advertisement
-->

Accidental computer geek, fascinated by most history and the multiplanetary future on its way. Quite keen on the democratization of space. | It's pronounced day-sha, but I answer to almost any variation thereof.

Advertisement
Comments

News

Tesla is not sparing any expense in ensuring the Cybercab is safe

Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility.

Published

on

Credit: @JoeTegtmeyer/X

The Tesla Cybercab could very well be the safest taxi on the road when it is released and deployed for public use. This was, at least, hinted at by the intensive safety tests that Tesla seems to be putting the autonomous two-seater through at its Giga Texas crash test facility. 

Intensive crash tests

As per recent images from longtime Giga Texas watcher and drone operator Joe Tegtmeyer, Tesla seems to be very busy crash testing Cybercab units. Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility just before the holidays. 

Tegtmeyer’s aerial photos showed the prototypes clustered outside the factory’s testing building. Some uncovered Cybercabs showed notable damage and one even had its airbags engaged. With Cybercab production expected to start in about 130 days, it appears that Tesla is very busy ensuring that its autonomous two-seater ends up becoming the safest taxi on public roads. 

Prioritizing safety

With no human driver controls, the Cybercab demands exceptional active and passive safety systems to protect occupants in any scenario. Considering Tesla’s reputation, it is then understandable that the company seems to be sparing no expense in ensuring that the Cybercab is as safe as possible.

Tesla’s focus on safety was recently highlighted when the Cybertruck achieved a Top Safety Pick+ rating from the Insurance Institute for Highway Safety (IIHS). This was a notable victory for the Cybertruck as critics have long claimed that the vehicle will be one of, if not the, most unsafe truck on the road due to its appearance. The vehicle’s Top Safety Pick+ rating, if any, simply proved that Tesla never neglects to make its cars as safe as possible, and that definitely includes the Cybercab.

Advertisement
-->
Continue Reading

Elon Musk

Tesla’s Elon Musk gives timeframe for FSD’s release in UAE

Provided that Musk’s timeframe proves accurate, FSD would be able to start saturating the Middle East, starting with the UAE, next year. 

Published

on

Tesla CEO Elon Musk stated on Monday that Full Self-Driving (Supervised) could launch in the United Arab Emirates (UAE) as soon as January 2026. 

Provided that Musk’s timeframe proves accurate, FSD would be able to start saturating the Middle East, starting with the UAE, next year. 

Musk’s estimate

In a post on X, UAE-based political analyst Ahmed Sharif Al Amiri asked Musk when FSD would arrive in the country, quoting an earlier post where the CEO encouraged users to try out FSD for themselves. Musk responded directly to the analyst’s inquiry. 

“Hopefully, next month,” Musk wrote. The exchange attracted a lot of attention, with numerous X users sharing their excitement at the idea of FSD being brought to a new country. FSD (Supervised), after all, would likely allow hands-off highway driving, urban navigation, and parking under driver oversight in traffic-heavy cities such as Dubai and Abu Dhabi.

Musk’s comments about FSD’s arrival in the UAE were posted following his visit to the Middle Eastern country. Over the weekend, images were shared online of Musk meeting with UAE Defense Minister, Deputy Prime Minister, and Dubai Crown Prince HH Sheikh Hamdan bin Mohammed. Musk also posted a supportive message about the country, posting “UAE rocks!” on X.

Advertisement
-->

FSD recognition

FSD has been getting quite a lot of support from foreign media outlets. FSD (Supervised) earned high marks from Germany’s largest car magazine, Auto Bild, during a test in Berlin’s challenging urban environment. The demonstration highlighted the system’s ability to handle dense traffic, construction sites, pedestrian crossings, and narrow streets with smooth, confident decision-making.

Journalist Robin Hornig was particularly struck by FSD’s superior perception and tireless attention, stating: “Tesla FSD Supervised sees more than I do. It doesn’t get distracted and never gets tired. I like to think I’m a good driver, but I can’t match this system’s all-around vision. It’s at its best when both work together: my experience and the Tesla’s constant attention.” Only one intervention was needed when the system misread a route, showcasing its maturity while relying on vision-only sensors and over-the-air learning.

Continue Reading

News

Tesla quietly flexes FSD’s reliability amid Waymo blackout in San Francisco

“Tesla Robotaxis were unaffected by the SF power outage,” Musk wrote in his post.

Published

on

Tesla highlighted its Full Self-Driving (Supervised) system’s robustness this week by sharing dashcam footage of a vehicle in FSD navigating pitch-black San Francisco streets during the city’s widespread power outage. 

While Waymo’s robotaxis stalled and caused traffic jams, Tesla’s vision-only approach kept operating seamlessly without remote intervention. Elon Musk amplified the clip, highlighting the contrast between the two systems.

Tesla FSD handles total darkness

The @Tesla_AI account posted a video from a Model Y operating on FSD during San Francisco’s blackout. As could be seen in the video, streetlights, traffic signals, and surrounding illumination were completely out, but the vehicle drove confidently and cautiously, just like a proficient human driver.

Musk reposted the clip, adding context to reports of Waymo vehicles struggling in the same conditions. “Tesla Robotaxis were unaffected by the SF power outage,” Musk wrote in his post. 

Musk and the Tesla AI team’s posts highlight the idea that FSD operates a lot like any experienced human driver. Since the system does not rely on a variety of sensors and a complicated symphony of factors, vehicles could technically navigate challenging circumstances as they emerge. This definitely seemed to be the case in San Francisco.  

Advertisement
-->

Waymo’s blackout struggles

Waymo faced scrutiny after multiple self-driving Jaguar I-PACE taxis stopped functioning during the blackout, blocking lanes, causing traffic jams, and requiring manual retrieval. Videos shared during the power outage showed fleets of Waymo vehicles just stopping in the middle of the road, seemingly confused about what to do when the lights go out. 

In a comment, Waymo stated that its vehicles treat nonfunctional signals as four-way stops, but “the sheer scale of the outage led to instances where vehicles remained stationary longer than usual to confirm the state of the affected intersections. This contributed to traffic friction during the height of the congestion.”

A company spokesperson also shared some thoughts about the incidents. “Yesterday’s power outage was a widespread event that caused gridlock across San Francisco, with non-functioning traffic signals and transit disruptions. While the failure of the utility infrastructure was significant, we are committed to ensuring our technology adjusts to traffic flow during such events,” the Waymo spokesperson stated, adding that it is “focused on rapidly integrating the lessons learned from this event, and are committed to earning and maintaining the trust of the communities we serve every day.”

Continue Reading