Connect with us

News

NASA’s InSight hopes to detect “marsquakes”, deploys seismometer on Mars

Published

on

In another historic feat for NASA’s InSight lander, a seismometer has now been deployed on Mars, marking the first time a scientific instrument has been placed onto the surface of another planet. Once the craft’s team have things set up for readings, its instruments will begin measuring the internal vibrations of the red planet, hoping to ultimately learn about the activities and composition of its core and crust. InSight’s instruments will also study how powerful and frequent seismic activity is on Mars along with how often the surface is hit with meteorites. If we’re hoping to explore and possibly live there one day, this is all very important information to have.

After launching on May 5, 2018, aboard an Atlas rocket in California, InSight and its MarCO twin CubeSat companions traveled through deep space for around 6 months before landing on the Martian surface at 11:52 PST on November 26, 2018, an event watched live around the world, including a broadcast in Times Square, New York City. The planned mission for the craft is a little over 1 Martian year, i.e., about 2 Earth years, during which time it will aim to provide scientific data useful for understanding the processes that have shaped the rocky planets of our solar system. In other words, the things InSight learns about Mars will be directly relevant to our own planet as well.

InSight’s name is actually an acronym for “Interior Exploration using Seismic Investigations, Geodesy and Heat Transport”, each part being a reference to the specific science it will be conducting. There are several auxiliary instruments on board the lander that will assist or complement its main mission. However, there are 3 scientific instruments on the craft to help meet its objectives.

InSight’s SEIC instrument, now sitting on the surface of Mars. | Credit: NASA/JPL-Caltech
Illustration of InSight’s SEIS instrument with some key components labeled. | Credit: NASA/JPL-Caltech

First, a seismometer named the Seismic Experiment for Interior Structure (SEIS) will study seismic waves from the Martian surface to study the planet’s crust. When magma moves or meteorites hit, the instrument will detect the motion and gather information that will tell scientists about Mars’ temperature, pressure, and composition. This is the instrument featured in the lander’s recent photo.

Second, a heat flow probe named the Heat Flow and Physical Properties Probe (HP3) will burrow more than 10 feet into the surface to measure the heat still flowing out of Mars, giving clues about how it evolved and whether Earth and Mars are made of the same materials. Finally, a radio science instrument named the Rotation and Interior Structure Experiment (RISE) will measure tiny changes in the location of InSight to measure Mars’ “wobbles” on its axis. This movement data will provide information about the planet’s core.

Advertisement
Artist’s rendition showing the inner structure of Mars. The topmost layer is known as the crust, underneath it is the mantle, which rests on a solid inner core. | Credit: NASA/JPL-Caltech
InSight will help us learn about the formation of Mars — as well as all rocky planets. Credit: NASA/JPL-Caltech

InSight is conducting its experiments on the western side of the Elysium Planitia of Mars, a smooth, flat region near the planet’s equator. The location was chosen from a pool of 22 candidate landing sites, all within Elysium, evaluated during several workshops from 2013-2015. The decision was made based on Elysium’s proximity to the equator (maximum sun for InSight’s solar arrays), low elevation (plenty of atmospheric space for its landing), lack of rocks and slopes (flat enough for the instruments to deploy and work properly), and the subsurface structure (so the digging instruments could burrow easily).

Next, InSight will finish setting up its remaining instruments and begin its full science mission. We can expect to continue receiving image updates from the lander as more milestones are reached. Here’s an extra bonus if you want to feel like you’re “there” with InSight: NASA’s “Experience InSight” interactive web page lets you control a virtual version of the lander in a Martian environment. You can deploy its solar panels, move around a few of its instruments, or just learn about the various parts that make up the mission. There are additionally two virtual cameras, just like the ones onboard the actual craft, enabling you to watch the movements you’re making, just like InSight’s team sees from their control center.

Watch the below video for a recap of InSight’s landing:

Advertisement

Accidental computer geek, fascinated by most history and the multiplanetary future on its way. Quite keen on the democratization of space. | It's pronounced day-sha, but I answer to almost any variation thereof.

Advertisement
Comments

Elon Musk

Tesla announces crazy new Full Self-Driving milestone

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

Published

on

Credit: Tesla

Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.

The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.

On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.

Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.

Advertisement

Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.

This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.

The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.

Advertisement
Continue Reading

News

Tesla Cybercab production begins: The end of car ownership as we know it?

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Published

on

Credit: Tesla | X

The first Tesla Cybercab rolled off of production lines at Gigafactory Texas yesterday, and it is more than just a simple manufacturing milestone for the company — it’s the opening salvo in a profound economic transformation.

Priced at under $30,000 with volume production slated for April, the steering-wheel-free, pedal-less Robotaxi-geared vehicle promises to make personal car ownership optional for many, slashing transportation costs to as little as $0.20 per mile through shared fleets and high utilization.

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Let’s examine the positives and negatives of what the Cybercab could mean for passenger transportation and vehicle ownership as we know it.

The Promise – A Radical Shift in Transportation Economics

Tesla has geared every portion of the Cybercab to be cheaper and more efficient. Even its design — a compact, two-seater, optimized for fleets and ride-sharing, the development of inductive charging, around 300 miles of range on a small battery, half the parts of the Model 3, and revolutionary “unboxed” manufacturing — is all geared toward rapid production.

Advertisement

Operating at a fraction of what today’s rideshare prices are, the Cybercab enables on-demand autonomy for a variety of people in a variety of situations.

Tesla ups Robotaxi fare price to another comical figure with service area expansion

It could also be the way people escape expensive and risky car ownership. Buying a vehicle requires expensive monthly commitments, including insurance and a payment if financed. It also immediately depreciates.

However, Cybercab could unlock potential profitability for owning a car by adding it to the Robotaxi network, enabling passive income. Cities could have parking lots repurposed into parks or housing, and emissions would drop as shared electric vehicles would outnumber gas cars (in time).

Advertisement

The first step of Tesla’s massive production efforts for the Cybercab could lead to millions of units annually, turning transportation into a utility like electricity — always available, cheap, and safe.

The Dark Side – Job Losses and Industry Upheaval

With Robotaxi and Cybercab, they present the same negatives as broadening AI — there’s a direct threat to the economy.

Uber, Lyft, and traditional taxis will rely on human drivers. Robotaxi will eliminate that labor cost, potentially displacing millions of jobs globally. In the U.S. alone, ride-hailing accounts for billions of miles of travel each year.

There are also potential ripple effects, as suppliers, mechanics, insurance adjusters, and even public transit could see reduced demand as shared autonomy grows. Past automation waves show job creation lags behind destruction, especially for lower-skilled workers.

Advertisement

Gig workers, like those who are seeking flexible income, face the brunt of this. Displaced drivers may struggle to retrain amid broader AI job shifts, as 2025 estimates bring between 50,000 and 300,000 layoffs tied to artificial intelligence.

It could also bring major changes to the overall competitive landscape. While Waymo and Uber have partnered, Tesla’s scale and lower costs could trigger a price war, squeezing incumbents and accelerating consolidation.

Balancing Act – Who Wins and Who Loses

There are two sides to this story, as there are with every other one.

The winners are consumers, Tesla investors, cities, and the environment. Consumers will see lower costs and safer mobility, while potentially alleviating themselves of awkward small talk in ride-sharing applications, a bigger complaint than one might think.

Advertisement

Elon Musk confirms Tesla Cybercab pricing and consumer release date

Tesla investors will be obvious winners, as the launch of self-driving rideshare programs on the company’s behalf will likely swell the company’s valuation and increase its share price.

Cities will have less traffic and parking needs, giving more room for housing or retail needs. Meanwhile, the environment will benefit from fewer tailpipes and more efficient fleets.

A Call for Thoughtful Transition

The Cybercab’s production debut forces us to weigh innovation against equity.

Advertisement

If Tesla delivers on its timeline and autonomy proves reliable, it could herald an era of abundant, affordable mobility that redefines urban life. But without proactive policies — retraining, safety nets, phased deployment — this revolution risks widening inequality and leaving millions behind.

The real question isn’t whether the Cybercab will disrupt — it’s already starting — it’s whether society is prepared for the economic earthquake it unleashes.

Advertisement
Continue Reading

News

Tesla Model 3 wins Edmunds’ Best EV of 2026 award

The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”

Published

on

Credit: Tesla

The Tesla Model 3 has won Edmunds‘ Top Rated Electric Car of 2026 award, beating out several other highly-rated and exceptional EV offerings from various manufacturers.

This is the second consecutive year the Model 3 beat out other cars like the Model Y, Audi A6 Sportback E-tron, and the BMW i5.

The car, which is Tesla’s second-best-selling vehicle behind the popular Model Y crossover, has been in the company’s lineup for nearly a decade. It offers essentially everything consumers could want from an EV, including range, a quality interior, performance, and Tesla’s Full Self-Driving suite, which is one of the best in the world.

The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”

In its Top Rated EVs piece on its website, it said about the Model 3:

Advertisement

“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is impressively well-rounded thanks to improved build quality, ride comfort, and a compelling combination of efficiency, performance, and value.”

Additionally, Jonathan Elfalan, Edmunds’ Director of Vehicle Testing, said:

“The Model 3 offers just about the perfect combination of everything — speed, range, comfort, space, tech, accessibility, and convenience. It’s a no-brainer if you want a sensible EV.”

The Model 3 is the perfect balance of performance and practicality. With the numerous advantages that an EV offers, the Model 3 also comes in at an affordable $36,990 for its Rear-Wheel Drive trim level.

Advertisement
Continue Reading