News
NASA orbiter captures beauty of Mars as global storm forces rover hibernation
Although NASA’s 14-year old Opportunity rover is currently trapped in a state of low-power hibernation in an effort to weather a record-breaking global dust storm encompassing Mars, the agency’s equally venerable Mars Reconnaissance Orbiter (MRO) – now in its 12th year of operations – remains a stoic overwatch and witness to the struggles of its land-locked companions.
Although MRO may be nearing its teenage years in orbit around the Red Planet, the Lockheed Martin-built spacecraft is currently the backbone of Mars-Earth communications, acting as a critical relay between the Curiosity and Opportunity rovers on the planet’s surface and its Earthly operators that are several tens of millions of miles distant. Thankfully, the European ExoMars Trace Gas Orbiter (TGO) and NASA’s new MAVEN orbiter are able to augment MRO’s communications capabilities in the event that problems arise with the old spacecraft, as well as the even older 2001 Mars Odyssey, an orbiter launched in 2001, a name inspired by fantasy/science-fiction film 2001: A Space Odyssey.
- A rendering of MRO, antenna and camera at the ready. MRO is a vital communications relay for rovers like Opportunity and Curiosity. (NASA/HiRISE)
- Extraordinary patterns are par for the course when dealing with Martian terrain. A polar ice cap’s many layers are pictured here. (NASA/HiRISE)
- The Mars Exploration Rover (also known as Opportunity) prepares for launch in 2003. Oppy may be small, but the rover has remained functional and still roves Mars more than 14 years after it landed on the Red Planet. (NASA)
Aside from its currently unmatched communications relay capabilities, MRO’s second science mission is mentioned in its name – reconnaissance. Enter HiRISE (High-Resolution Imaging Science Experiment), by far the most capable imaging system to ever orbit another planet, and funnily enough even more capable than Earth-bound imaging satellites as a result of its ability to stably remain in extremely low Martian orbits, thanks to the planet’s low gravity and minimal atmosphere. MRO and its HiRISE imaging hardware currently orbit Mars at an average altitude of roughly 175 miles (280 km) and are able to take photos with a resolving power upwards of 30 centimeters per pixel (0.3m/px), whereas the absolutely best and fully-dedicated Earth imaging satellites are currently limited by a combination of physics and technological complexity to roughly 50 centimeters per pixel (0.5m/px).
- An overview of the terrain surrounding the blue dune. (NASA/HiRISE)
- And the blue dune itself, captured a few months prior in 2017. (NASA/HiRISE)
As a result, HiRISE has produced some of the highest-resolution (if not the outright best) photos of an extraterrestrial body of any spacecraft to leave Earth orbit. Although an inherent delay in data collection and image processing means that no images have been published by HiRISE since Mars was enveloped in a global dust storm in June 2018, images from late 2017 and early 2018 serve to emphasize the staggering beauty and variety of the many landscapes Mars has to offer. Perched miles above, MRO may once again hear from the beleaguered rover Opportunity (as the dust storm subsides over the coming weeks and months, allowing appreciable quantities of sunlight to grace the rover’s solar panels and bring it back to life from its state of indefinite slumber.
In the meantime, we can try to appreciate the awe-inspiring, austere beauty of Mars, from its vast poles of water and carbon dioxide ice and bright blue sand dunes to its sprawling mazes of chaos terrain.
- After being struck by a small meteor, a Martian hill experiences a dramatic landslide, known as slope lineae.And the blue dune itself, captured a few months prior in 2017. (NASA/HiRISE)
- Some of many thousands of wild, massive dunes spread across the surface of Mars. (NASA/HiRISE)
- Intense lave flows make for an alien Martian landscape, August 2017. (NASA/HiRISE)
- Another extraordinary Martian dunescape, captured by HiRISE in November 2017.And the blue dune itself, captured a few months prior in 2017. (NASA/HiRISE)
News
Tesla is improving Giga Berlin’s free “Giga Train” service for employees
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
New shuttle route
As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.
“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.
Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.
Tesla pushes for majority rail commuting
Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.
The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.
News
Tesla Model 3 and Model Y dominate China’s real-world efficiency tests
The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.
Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions.
The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.
Tesla secures top efficiency results
Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report.
These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla
Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker.
“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.
Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.
Elon Musk
Elon Musk reveals what will make Optimus’ ridiculous production targets feasible
Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.
Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.
Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.
The highest volume product
Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.
Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.
Self-replication is key
During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.
The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems.
If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.









