News
NASA orbiter captures beauty of Mars as global storm forces rover hibernation
Although NASA’s 14-year old Opportunity rover is currently trapped in a state of low-power hibernation in an effort to weather a record-breaking global dust storm encompassing Mars, the agency’s equally venerable Mars Reconnaissance Orbiter (MRO) – now in its 12th year of operations – remains a stoic overwatch and witness to the struggles of its land-locked companions.
Although MRO may be nearing its teenage years in orbit around the Red Planet, the Lockheed Martin-built spacecraft is currently the backbone of Mars-Earth communications, acting as a critical relay between the Curiosity and Opportunity rovers on the planet’s surface and its Earthly operators that are several tens of millions of miles distant. Thankfully, the European ExoMars Trace Gas Orbiter (TGO) and NASA’s new MAVEN orbiter are able to augment MRO’s communications capabilities in the event that problems arise with the old spacecraft, as well as the even older 2001 Mars Odyssey, an orbiter launched in 2001, a name inspired by fantasy/science-fiction film 2001: A Space Odyssey.
- A rendering of MRO, antenna and camera at the ready. MRO is a vital communications relay for rovers like Opportunity and Curiosity. (NASA/HiRISE)
- Extraordinary patterns are par for the course when dealing with Martian terrain. A polar ice cap’s many layers are pictured here. (NASA/HiRISE)
- The Mars Exploration Rover (also known as Opportunity) prepares for launch in 2003. Oppy may be small, but the rover has remained functional and still roves Mars more than 14 years after it landed on the Red Planet. (NASA)
Aside from its currently unmatched communications relay capabilities, MRO’s second science mission is mentioned in its name –Â reconnaissance. Enter HiRISE (High-Resolution Imaging Science Experiment), by far the most capable imaging system to ever orbit another planet, and funnily enough even more capable than Earth-bound imaging satellites as a result of its ability to stably remain in extremely low Martian orbits, thanks to the planet’s low gravity and minimal atmosphere. MRO and its HiRISE imaging hardware currently orbit Mars at an average altitude of roughly 175 miles (280 km) and are able to take photos with a resolving power upwards of 30 centimeters per pixel (0.3m/px), whereas the absolutely best and fully-dedicated Earth imaging satellites are currently limited by a combination of physics and technological complexity to roughly 50 centimeters per pixel (0.5m/px).
- An overview of the terrain surrounding the blue dune. (NASA/HiRISE)
- And the blue dune itself, captured a few months prior in 2017. (NASA/HiRISE)
As a result, HiRISE has produced some of the highest-resolution (if not the outright best) photos of an extraterrestrial body of any spacecraft to leave Earth orbit. Although an inherent delay in data collection and image processing means that no images have been published by HiRISE since Mars was enveloped in a global dust storm in June 2018, images from late 2017 and early 2018 serve to emphasize the staggering beauty and variety of the many landscapes Mars has to offer. Perched miles above, MRO may once again hear from the beleaguered rover Opportunity (as the dust storm subsides over the coming weeks and months, allowing appreciable quantities of sunlight to grace the rover’s solar panels and bring it back to life from its state of indefinite slumber.
In the meantime, we can try to appreciate the awe-inspiring, austere beauty of Mars, from its vast poles of water and carbon dioxide ice and bright blue sand dunes to its sprawling mazes of chaos terrain.
- After being struck by a small meteor, a Martian hill experiences a dramatic landslide, known as slope lineae.And the blue dune itself, captured a few months prior in 2017. (NASA/HiRISE)
- Some of many thousands of wild, massive dunes spread across the surface of Mars. (NASA/HiRISE)
- Intense lave flows make for an alien Martian landscape, August 2017. (NASA/HiRISE)
- Another extraordinary Martian dunescape, captured by HiRISE in November 2017.And the blue dune itself, captured a few months prior in 2017. (NASA/HiRISE)
News
Tesla Robotaxi has a highly-requested hardware feature not available on typical Model Ys
These camera washers are crucial for keeping the operation going, as they are the sole way Teslas operate autonomously. The cameras act as eyes for the car to drive, recognize speed limit and traffic signs, and travel safely.
Tesla Robotaxi has a highly-requested hardware feature that is not available on typical Model Ys that people like you and me bring home after we buy them. The feature is something that many have been wanting for years, especially after the company adopted a vision-only approach to self-driving.
After Tesla launched driverless Robotaxi rides to the public earlier this week in Austin, people have been traveling to the Lone Star State in an effort to hopefully snag a ride from one of the few vehicles in the fleet that are now no longer required to have Safety Monitors present.
BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor
Although only a few of those completely driverless rides are available, there have been some new things seen on these cars that are additions from regular Model Ys, including the presence of one new feature: camera washers.
With the Model Y, there has been a front camera washer, but the other exterior “eyes” have been void of any solution for this. For now, owners are required to clean them manually.
In Austin, Tesla is doing things differently. It is now utilizing camera washers on the side repeater and rear bumper cameras, which will keep the cameras clean and keep operation as smooth and as uninterrupted as possible:
🚨 Tesla looks to have installed Camera Washers on the side repeater cameras on Robotaxis in Austin
pic.twitter.com/xemRtDtlRR— TESLARATI (@Teslarati) January 23, 2026
Rear Camera Washer on Tesla Robotaxi pic.twitter.com/P9hgGStHmV
— TESLARATI (@Teslarati) January 24, 2026
These camera washers are crucial for keeping the operation going, as they are the sole way Teslas operate autonomously. The cameras act as eyes for the car to drive, recognize speed limit and traffic signs, and travel safely.
This is the first time we are seeing them, so it seems as if Safety Monitors might have been responsible for keeping the lenses clean and unobstructed previously.
However, as Tesla transitions to a fully autonomous self-driving suite and Robotaxi expands to more vehicles in the Robotaxi fleet, it needed to find a way to clean the cameras without any manual intervention, at least for a short period, until they can return for interior and exterior washing.
News
Tesla makes big Full Self-Driving change to reflect future plans
Tesla made a dramatic change to the Online Design Studio to show its plans for Full Self-Driving, a major part of the company’s plans moving forward, as CEO Elon Musk has been extremely clear on the direction moving forward.
With Tesla taking a stand and removing the ability to purchase Full Self-Driving outright next month, it is already taking steps to initiate that with owners and potential buyers.
On Thursday night, the company updated its Online Design Studio to reflect that in a new move that now lists the three purchase options that are currently available: Monthly Subscription, One-Time Purchase, or Add Later:
🚨 Check out the change Tesla made to its Online Design Studio:
It now lists the Monthly Subscription as an option for Full Self-Driving
It also shows the outright purchase option as expiring on February 14 pic.twitter.com/pM6Svmyy8d
— TESLARATI (@Teslarati) January 23, 2026
This change replaces the former option for purchasing Full Self-Driving at the time of purchase, which was a simple and single box to purchase the suite outright. Subscriptions were activated through the vehicle exclusively.
However, with Musk announcing that Tesla would soon remove the outright purchase option, it is clearer than ever that the Subscription plan is where the company is headed.
The removal of the outright purchase option has been a polarizing topic among the Tesla community, especially considering that there are many people who are concerned about potential price increases or have been saving to purchase it for $8,000.
This would bring an end to the ability to pay for it once and never have to pay for it again. With the Subscription strategy, things are definitely going to change, and if people are paying for their cars monthly, it will essentially add $100 per month to their payment, pricing some people out. The price will increase as well, as Musk said on Thursday, as it improves in functionality.
I should also mention that the $99/month for supervised FSD will rise as FSD’s capabilities improve.
The massive value jump is when you can be on your phone or sleeping for the entire ride (unsupervised FSD). https://t.co/YDKhXN3aaG
— Elon Musk (@elonmusk) January 23, 2026
Those skeptics have grown concerned that this will actually lower the take rate of Full Self-Driving. While it is understandable that FSD would increase in price as the capabilities improve, there are arguments for a tiered system that would allow owners to pay for features that they appreciate and can afford, which would help with data accumulation for the company.
Musk’s new compensation package also would require Tesla to have 10 million active FSD subscriptions, but people are not sure if this will move the needle in the correct direction. If Tesla can potentially offer a cheaper alternative that is not quite unsupervised, things could improve in terms of the number of owners who pay for it.
News
Tesla Model S completes first ever FSD Cannonball Run with zero interventions
The coast-to-coast drive marked the first time Tesla’s FSD system completed the iconic, 3,000-mile route end to end with no interventions.
A Tesla Model S has completed the first-ever full Cannonball Run using Full Self-Driving (FSD), traveling from Los Angeles to New York with zero interventions. The coast-to-coast drive marked the first time Tesla’s FSD system completed the iconic, 3,000-mile route end to end, fulfilling a long-discussed benchmark for autonomy.
A full FSD Cannonball Run
As per a report from The Drive, a 2024 Tesla Model S with AI4 and FSD v14.2.2.3 completed the 3,081-mile trip from Redondo Beach in Los Angeles to midtown Manhattan in New York City. The drive was completed by Alex Roy, a former automotive journalist and investor, along with a small team of autonomy experts.
Roy said FSD handled all driving tasks for the entirety of the route, including highway cruising, lane changes, navigation, and adverse weather conditions. The trip took a total of 58 hours and 22 minutes at an average speed of 64 mph, and about 10 hours were spent charging the vehicle. In later comments, Roy noted that he and his team cleaned out the Model S’ cameras during their stops to keep FSD’s performance optimal.Â
History made
The historic trip was quite impressive, considering that the journey was in the middle of winter. This meant that FSD didn’t just deal with other cars on the road. The vehicle also had to handle extreme cold, snow, ice, slush, and rain.
As per Roy in a post on X, FSD performed so well during the trip that the journey would have been completed faster if the Model S did not have people onboard. “Elon Musk was right. Once an autonomous vehicle is mature, most human input is error. A comedy of human errors added hours and hundreds of miles, but FSD stunned us with its consistent and comfortable behavior,” Roy wrote in a post on X.
Roy’s comments are quite notable as he has previously attempted Cannonball Runs using FSD on December 2024 and February 2025. Neither were zero intervention drives.









