News
No, Tesla wasn’t “cheated” in the Model 3 headlight safety test by the IIHS
With the Insurance Institute for Highway Safety’s release of initial crash test information for the Tesla Model 3 came cries from many in the electric vehicle community that Tesla was “being cheated.” This isn’t entirely true as the new IIHS test removes a lot of cars out of the Top Safety Pick+ rating, the highest accolade the independent safety tester will give a car.
The Insurance Institute for Highway Safety (IIHS) is an independent testing organization funded by insurance companies and some of the banks who back them. The IIHS purchases every car it tests–usually several of each–and tests these vehicles in their highest-available safety configuration. These crash tests usually destroy the vehicles in question, of course, but give an independent, third-party result not otherwise available.
When the IIHS’ initial safety results for the Tesla Model 3 were released, they included ratings for only two of the seven total ratings given to a vehicle. Those ratings, posted to the IIHS.org website, created a lot of response from the community regarding the failure of the Model 3’s headlamps to pass muster.
The tests so far include only the non-invasive, non-destructive tests normally conducted by the IIHS. Namely to crash mitigation systems and headlamps. It’s likely that the next test to see release on the Model 3 will be for LATCH child safety system use, another non-destructive test. From there, crash testing will begin. For that, IIHS needs to receive more Model 3 vehicles (5 in all), the rest of which are on order and expected later this year. Like any other Model 3 buyer, delays in manufacturing have put the IIHS’ ownership of the cars for evaluation on hold.
How the IIHS Conducts Headlight Tests, and Why
The IIHS conducts headlamps tests because, according to the organization, about half of all fatal crashes in the U.S. occur in the dark and many of those are on unlit roads where headlamps are the only thing illuminating whatever’s in front of the car. Although headlights are mandatory and minimum illumination requirements are required by law for all street-legal vehicles, there is a wide variance in how much (and how useful) that illumination can be. Especially with the advent of new lighting technologies.
“Headlight technology has been developing rapidly in recent years. LED and high-intensity discharge (HID) lamps have begun to replace the traditional halogen ones,” IIHS explains on its website. “Many automakers offer curve-adaptive headlights, which respond to steering and swivel according to the direction of travel. Many also offer high-beam assist, a feature that can increase the use of high beams..” These and other variables mean that headlights of the same type on one vehicle can be much worse than they can on another. Even little things like how the lights are focused, what type of light they emit, etc. can change effectiveness.
For those reasons, the IIHS instituted a headlight testing methodology in 2016. Starting this year (2018), these test results directly affect a vehicle’s eligibility for Top Safety Pick+ status. So far in 2018, only a handful of models have received TSP+ ratings. Somewhat surprising for luxury and high-end car buyers is the fact that almost all of those TSP+ vehicles are lower-end vehicles from makes like Hyundai and Subaru.
Testing for headlamps is conducted using a multi-part evaluation using a hypothetical, clear, two-lane road. The tests include measurements in a straightaway, measuring both the length and amount of illumination as well as the amount of glare the lights create for oncoming drivers. Then a gradual left- and right-hand turn and a steeper left- and right-hand curve are measured for a total of five directions in all.
Results are taken from varied distances at 10 inches high and 3-feet, 7-inches high (from the ground) to mimic where the driver is looking (out and down) and where oncoming vehicle drivers are seeing from (higher up). Ratings are then assigned according to how these measurements line up with a hypothetical ideal headlight system. Both low and high beams are tested the same way with the low beams being weighted for scoring as they are used most often in the real world. Vehicles with automatic high beam systems are given more points as the high beams will be used more often.
The Controversy Surrounding the IIHS Headlight Test
The inherent weakness in this IIHS test is similar to that of most of its advanced testing: it’s only tested on the ideal vehicle trim level and options. In other words, the testing is most likely happening on the most expensive model being sold, not necessarily on the most mainstream version of the vehicle. This becomes obvious when the bulk of the Top Safety Pick+ list is comprised of vehicles like the 2018 Subaru WRX.
The WRX is a great car, sure; a personal favorite in fact. But its winning of a TSP+ badge is a little misleading. The volume-selling model WRX is the mid-tier Premium trim, which doesn’t include the LED headlights or the automatic high beam control tested by the IIHS. To get those, one has to go up to the more expensive Limited trim point and add the EyeSight system. That latter point can only come if the buyer of this driver’s car is willing to drop their manual transmission for a CVT. That’s another sticking point as the WRX has a large percentage of buyers who want to shift the gears themselves.
What all of this means is that the 2018 WRX is a great car, but it’s not likely to be purchased in the configuration which the IIHS used to test its headlamps with. Other cars on the TSP+ list are much the same.
The interesting note here is that unlike actual crash tests, the slightly more subjective headlamp tests of the IIHS fall into the non-destructive tests for other safety equipment that, while respected, are also flawed for the same reason: only top-end models tend to have all of that equipment on them. Unlike those other safety items, however, the headlamp tests can hurt higher-end models while lower-end options would ace them. Why? Because LED headlamps, which consistently appear to fail most of the glare testing that the IIHS does, are generally only found on top-end models or luxury vehicles. There could be a lot of reasons for that, but my personal theory is that it has to do with automakers having to find a median between maximum safe illumination and glare due to how reflective LED lamps are designed.
The current IIHS Top Safety Pick+ list includes no midsize luxury cars (which the Model 3 is considered), though the overall midsize car category has five entries. All of them with caveats as to what must be included (usually top trim point items or options). Last year, under the old rules, most midsize and midsize luxury cars made the TSP+ list and Tesla’s Model S failed to make the list in part, again, for headlights.
It’s difficult to say what will happen with the Insurance Institute’s testing going forward. Likely manufacturers will come up with solutions to receive better scores on the headlamps test, perhaps by changing LED lighting designs or gaming the IIHS tests (as they have in the past with the small front overlap).
Tesla has some smart engineers and could probably figure out a way to remedy the lighting problem that’s kept their vehicles from rating high on IIHS tests in recent years. With a mainstream attempt like the Model 3, that could become a very important goal as buyers in the midsize sedan category tend to be safety conscious consumers.
Elon Musk
Tesla CEO Elon Musk teases insane capabilities of next major FSD update
Tesla CEO Elon Musk teased the insane capabilities of the next major Full Self-Driving update just hours after the company rolled out version 14.2 to owners.
Tesla Full Self-Driving v14.2 had some major improvements from the previous iteration of v14.1.x. We were on v14.1.7, the most advanced configuration of the v14.1 family, before Tesla transitioned us and others to v14.2.
However, Musk has said that the improvements coming in the next major update, which will be v14.3, will be where “the last big piece of the puzzle finally lands.”
14.3 is where the last big piece of the puzzle finally lands
— Elon Musk (@elonmusk) November 21, 2025
There were some major improvements with v14.2, most notably, Tesla seemed to narrow in on the triggers that caused issues with hesitation and brake stabbing in v14.1.x.
One of the most discussed issues with the past rollout was that of brake stabbing, where the vehicle would contemplate proceeding with a route as traffic was coming from other directions.
We experienced it most frequently at intersections, especially four-way stop signs.
Elon Musk hints at when Tesla can fix this FSD complaint with v14
In our review of it yesterday, it was evident that this issue had been resolved, at least to the extent that we had no issues with it in a 62-minute drive, which you can watch here.
Some owners also reported a more relaxed driver monitoring system, which is something Tesla said it was working on as it hopes to allow drivers to text during operation in the coming months. We did not test this, as laws in Pennsylvania prohibit the use of phones at any time due to the new Paul Miller’s Law, which took effect earlier this year.
However, the improvements indicate that Tesla is certainly headed toward a much more sentient FSD experience, so much so that Musk’s language seems to be more indicative of a more relaxed experience in terms of overall supervision from the driver, especially with v14.3.
Musk did not release or discuss a definitive timeline for the release of v14.3, especially as v14.2 just rolled out to Early Access Program (EAP) members yesterday. However, v14.1 rolled out to Tesla owners just a few weeks ago in late 2025. There is the potential that v14.3 could be part of the coming Holiday Update, or potentially in a release of its own before the New Year.
News
Tesla Full Self-Driving v14.2 – Full Review, the Good and the Bad
Tesla rolled out Full Self-Driving version 14.2 yesterday to members of the Early Access Program (EAP). Expectations were high, and Tesla surely delivered.
With the rollout of Tesla FSD v14.2, there were major benchmarks for improvement from the v14.1 suite, which spanned across seven improvements. Our final experience with v14.1 was with v14.1.7, and to be honest, things were good, but it felt like there were a handful of regressions from previous iterations.
While there were improvements in brake stabbing and hesitation, we did experience a few small interventions related to navigation and just overall performance. It was nothing major; there were no critical takeovers that required any major publicity, as they were more or less subjective things that I was not particularly comfortable with. Other drivers might have been more relaxed.
With v14.2 hitting our cars yesterday, there were a handful of things we truly noticed in terms of improvement, most notably the lack of brake stabbing and hesitation, a major complaint with v14.1.x.
However, in a 62-minute drive that was fully recorded, there were a lot of positives, and only one true complaint, which was something we haven’t had issues with in the past.
The Good
Lack of Brake Stabbing and Hesitation
Perhaps the most notable and publicized issue with v14.1.x was the presence of brake stabbing and hesitation. Arriving at intersections was particularly nerve-racking on the previous version simply because of this. At four-way stops, the car would not be assertive enough to take its turn, especially when other vehicles at the same intersection would inch forward or start to move.
This was a major problem.
However, there were no instances of this yesterday on our lengthy drive. It was much more assertive when arriving at these types of scenarios, but was also more patient when FSD knew it was not the car’s turn to proceed.
Can report on v14.2 today there were ZERO instances of break stabbing or hesitation at intersections today
It was a significant improvement from v14.1.x
— TESLARATI (@Teslarati) November 21, 2025
This improvement was the most noticeable throughout the drive, along with fixes in overall smoothness.
Speed Profiles Seem to Be More Reasonable
There were a handful of FSD v14 users who felt as if the loss of a Max Speed setting was a negative. However, these complaints will, in our opinion, begin to subside, especially as things have seemed to be refined quite nicely with v14.2.
Freeway driving is where this is especially noticeable. If it’s traveling too slow, just switch to a faster profile. If it’s too fast, switch to a slower profile. However, the speeds seem to be much more defined with each Speed Profile, which is something that I really find to be a huge advantage. Previously, you could tell the difference in speeds, but not in driving styles. At times, Standard felt a lot like Hurry. Now, you can clearly tell the difference between the two.
It seems as if Tesla made a goal that drivers should be able to tell which Speed Profile is active if it was not shown on the screen. With v14.1.x, this was not necessarily something that could be done. With v14.2, if someone tested me on which Speed Profile was being used, I’m fairly certain I could pick each one.
Better Overall Operation
I felt, at times, especially with v14.1.7, there were some jerky movements. Nothing that was super alarming, but there were times when things just felt a little more finicky than others.
v14.2 feels much smoother overall, with really great decision-making, lane changes that feel second nature, and a great speed of travel. It was a very comfortable ride.
The Bad
Parking
It feels as if there was a slight regression in parking quality, as both times v14.2 pulled into parking spots, I would have felt compelled to adjust manually if I were staying at my destinations. For the sake of testing, at my first destination, I arrived, allowed the car to park, and then left. At the tail-end of testing, I walked inside the store that FSD v14.2 drove me to, so I had to adjust the parking manually.
This was pretty disappointing. Apart from parking at Superchargers, which is always flawless, parking performance is something that needs some attention. The release notes for v14.2. state that parking spot selection and parking quality will improve with future versions.
Any issues with parking on your end? 14.1.7 didn’t have this trouble with parking pic.twitter.com/JPLRO2obUj
— TESLARATI (@Teslarati) November 21, 2025
However, this was truly my only complaint about v14.2.
You can check out our full 62-minute ride-along below:
Elon Musk
SpaceX issues statement on Starship V3 Booster 18 anomaly
The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas.
SpaceX has issued an initial statement about Starship Booster 18’s anomaly early Friday. The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas.
SpaceX’s initial comment
As per SpaceX in a post on its official account on social media platform X, Booster 18 was undergoing gas system pressure tests when the anomaly happened. Despite the nature of the incident, the company emphasized that no propellant was loaded, no engines were installed, and personnel were kept at a safe distance from the booster, resulting in zero injuries.
“Booster 18 suffered an anomaly during gas system pressure testing that we were conducting in advance of structural proof testing. No propellant was on the vehicle, and engines were not yet installed. The teams need time to investigate before we are confident of the cause. No one was injured as we maintain a safe distance for personnel during this type of testing. The site remains clear and we are working plans to safely reenter the site,” SpaceX wrote in its post on X.
Incident and aftermath
Livestream footage from LabPadre showed Booster 18’s lower half crumpling around the liquid oxygen tank area at approximately 4:04 a.m. CT. Subsequent images posted by on-site observers revealed extensive deformation across the booster’s lower structure. Needless to say, spaceflight observers have noted that Booster 18 would likely be a complete loss due to its anomaly.
Booster 18 had rolled out only a day earlier and was one of the first vehicles in the Starship V3 program. The V3 series incorporates structural reinforcements and reliability upgrades intended to prepare Starship for rapid-reuse testing and eventual tower-catch operations. Elon Musk has been optimistic about Starship V3, previously noting on X that the spacecraft might be able to complete initial missions to Mars.
