Connect with us

News

SpaceX schedules next Starlink launch, fires up rocket for asteroid redirect mission

Published

on

Update: SpaceX has successfully static fired the Falcon 9 tasked with launching DART. The rocket will now roll back to SLC-4’s integration hangar for payload installation before rolling out to the pad a second time.

SpaceX has scheduled its next East Coast Starlink launch just a few weeks after the latest as a different Falcon 9 rocket prepares to launch NASA’s DART asteroid redirection demonstration mission.

On Tuesday, NASA confirmed that a SpaceX Falcon 9 rocket is on track to launch the Double Asteroid Redirect Test (DART) spacecraft no earlier than (NET) 10:21 pm PST on Tuesday, November 23rd (06:21 UTC 24 Nov). Following the successful launch of NASA and the European Space Agency’s (ESA) Sentinel 6A spacecraft in November 2020 and the first launch of a full batch of laser-linked Starlink satellites on September 14th, DART will be SpaceX’s third West Coast launch in just over 12 months and the first time the company has launched out of Vandenberg twice in one year since 2019.

Up next, Spaceflight Now and launch photographer Ben Cooper recently confirmed that SpaceX has already scheduled its next Starlink launch after a successful mission on November 13th, aiming to deliver another batch of ~53 laser-linked satellites to orbit NET 1:36am EST (06:36 UTC), Wednesday, December 1st.

Oddly, Spaceflight Now’s launch calendar indicates that SpaceX’s next Starlink launch won’t help recent confusion over the constellations mission naming scheme. SpaceX’s most recent Starlink launch was deemed “Starlink 4-1,” which is explained below.

Advertisement
-->

“In simple terms, the first ~4400-satellite phase of SpaceX’s Starlink constellation is split into five groups of satellites – known as shells – with different orbital altitudes and inclinations (the orbit’s tilt). In May, SpaceX’s most recent East Coast Starlink launch effectively completed the first of those five shells or groups. With Starlink V1.5’s September debut, SpaceX also debuted a new naming scheme, deeming the mission Starlink 2-1 – the first launch of the second shell. Based on the inclination implied in Starlink 4-1’s hazard warning, Shell 4 refers to a second group of 1584 satellites almost identical to Shell 1, while Shell 2 is a semi-polar group of 720 satellites. That means that Shells 3 and 5 are sets of either 340 or 158 satellites at slightly different altitudes in polar orbit and will likely be the last Phase 1 Starlink satellites SpaceX launches.”

Teslarati.com — November 7th, 2021

SpaceX’s next Starlink launch, however, is apparently named “Starlink 4-3,” implying that the company has either skipped a launch or was forced to swap the order of two missions for unknown reasons (perhaps the same reason that Starlink 2-3 – itself leapfrogging 2-2 – was indefinitely delayed from an original October launch target. In short, aside from being few and far between for unspecified reasons, the sequencing of SpaceX Starlink launches have been a mess in the second half of 2021 and it doesn’t look like that’s going to change anytime soon.

Barring the delay of one or several other missions, CEO Elon Musk’s recent statement that SpaceX is “aiming [to launch] 80 tons” or ~175,000 pounds of payload in Q4 2021 leaves room for two more Starlink launches (including 4-3) in the last six weeks of the year.

Falcon 9’s Sentinel 6A launch and landing, November 2020. (SpaceX)

In the meantime, as early as November 23rd, SpaceX is scheduled to launch DART to an unspecified orbit – perhaps a geostationary transfer orbit (GTO) but maybe directly into deep space, the latter of which would make it Falcon 9’s first launch beyond the Earth-Moon system. Despite the extremely light payload, Falcon 9 booster B1063 is expected to land at sea on drone ship Of Course I Still Love You (OCISLY), which falls in favor of a high-velocity Earth escape launch.

A SpaceX, JHUAPL (Johns Hopkins University Applied Physics Lab), and NASA team successfully mated the ~550-670 kg (1200-1500 lb) spacecraft to Falcon 9’s payload adapter on November 10th and are likely just a few days away from encapsulating DART inside the rocket’s comparatively massive payload fairing. Sans payload, Falcon 9 will likely roll out to SpaceX’s SLC-4E pad and perform a prelaunch static fire test any day now before heading back to the hangar for fairing installation.

Update: A NASASpaceflight.com forum member spotted Falcon 9 vertical while traveling by train past SpaceX’s Vandenberg launch pad, confirming that a static fire is imminent.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Supercharger network delivers record 6.7 TWh in 2025

The network now exceeds 75,000 stalls globally, and it supports even non-Tesla vehicles across several key markets.

Published

on

tesla-diner-supercharger
Credit: Tesla

Tesla’s Supercharger Network had its biggest year ever in 2025, delivering a record 6.7 TWh of electricity to vehicles worldwide. 

To celebrate its busy year, the official @TeslaCharging account shared an infographic showing the Supercharger Network’s growth from near-zero in 2012 to this year’s impressive milestone.

Record 6.7 TWh delivered in 2025

The bar chart shows steady Supercharger energy delivery increases since 2012. Based on the graphic, the Supercharger Network started small in the mid-2010s and accelerated sharply after 2019, when the Model 3 was going mainstream. 

Each year from 2020 onward showed significantly more energy delivery, with 2025’s four quarters combining for the highest total yet at 6.7 TWh.

This energy powered millions of charging sessions across Tesla’s growing fleet of vehicles worldwide. The network now exceeds 75,000 stalls globally, and it supports even non-Tesla vehicles across several key markets. This makes the Supercharger Network loved not just by Tesla owners but EV drivers as a whole.

Advertisement
-->

Resilience after Supercharger team changes

2025’s record energy delivery comes despite earlier 2024 layoffs on the Supercharger team, which sparked concerns about the system’s expansion pace. Max de Zegher, Tesla Director of Charging North America, also highlighted that “Outside China, Superchargers delivered more energy than all other fast chargers combined.”

Longtime Tesla owner and FSD tester Whole Mars Catalog noted the achievement as proof of continued momentum post-layoffs. At the time of the Supercharger team’s layoffs in 2024, numerous critics were claiming that Elon Musk was halting the network’s expansion altogether, and that the team only remained because the adults in the room convinced the juvenile CEO to relent.

Such a scenario, at least based on the graphic posted by the Tesla Charging team on X, seems highly implausible. 

Continue Reading

News

Tesla targets production increase at Giga Berlin in 2026

Plant manager André Thierig confirmed the facility’s stable outlook to the DPA, noting that Giga Berlin implemented no layoffs or shutdowns amid challenging market conditions.

Published

on

Credit: Tesla

Tesla is looking positively toward 2026 with plans for further growth at its Grünheide factory in Germany, following steady quarterly increases throughout 2025. 

Plant manager André Thierig confirmed the facility’s stable outlook to the Deutsche Presse-Agentur (DPA), noting that Giga Berlin implemented no layoffs or shutdowns despite challenging market conditions. 

Giga Berlin’s steady progress

Thierig stated that Giga Berlin’s production actually rose in every quarter of 2025 as planned, stating: “This gives us a positive outlook for the new year, and we expect further growth.” The factory currently supplies over 30 markets, with Canada recently being added due to cost advantages.

Giga Berlin’s expansion is still underway, with the first partial approval for capacity growth being secured. Preparations for a second partial approval are underway, though the implementation of more production capacity would still depend on decisions from Tesla’s US leadership. 

Over the year, updates to Giga Berlin’s infrastructure were also initiated. These include the relocation of the Fangschleuse train station and the construction of a new road. Tesla is also planning to start battery cell production in Germany starting 2027, targeting up to 8 GWh annually.

Advertisement
-->

Resilience amid market challenges

Despite a 48% drop in German registrations, Tesla maintained Giga Berlin’s stability. Thierig highlighted this, stating that “We were able to secure jobs here and were never affected by production shutdowns or job cuts like other industrial sites in Germany.”

Thierig also spoke positively towards the German government’s plans to support households, especially those with low and middle incomes, in the purchase and leasing of electric vehicles this 2026. “In our opinion, it is important that the announcement is implemented very quickly so that consumers really know exactly what is coming and when,” the Giga Berlin manager noted. 

Giga Berlin currently employs around 11,000 workers, and it produces about 5,000 Model Y vehicles per week, as noted in an Ecomento report. The facility produces the Model Y Premium variants, the Model Y Standard, and the Model Y Performance. 

Continue Reading

News

Tesla revamped Semi spotted, insane 1.2 MW charging video releases

These developments highlight Tesla’s ongoing refinements to the vehicle’s design and infrastructure.

Published

on

Credit: @HinrichsZane/X

Tesla is gearing up for high-volume Semi production in 2026, with the Class 8 all-electric truck’s revamped variant being spotted in the wild recently. Official footage from Tesla also showed the Semi achieving an impressive 1.2 MW charging rate on a charger. 

These developments highlight Tesla’s ongoing refinements to the vehicle’s design and infrastructure.

Revamped Tesla Semi sighting

Tesla Semi advocate @HinrichsZane, who has been chronicling the progress of the vehicle’s Nevada factory, recently captured exclusive drone footage of the refreshed Class 8 truck at a Megacharger stall near Giga Nevada. The white unit features a full-width front light bar similar to the Model Y and the Cybercab, shorter side windows, a cleared fairing area likely for an additional camera, and diamond plate traction strips on the steps.

Overall, the revamped Semi looks ready for production and release. The sighting marks one of the first real-life views of the Class 8 all-electric truck’s updated design, with most improvements, such as potential 4680 cells and enhanced internals, being hidden from view.

1.2 MW charging speed and a new connector

The official Tesla Semi account on X also shared an official video of Tesla engineers hitting 1.2 MW sustained charging on a Megacharger, demonstrating the vehicle’s capability for extremely rapid charging. Tesla Semi program lead Dan Priestley confirmed in a later post on X that the test occurred at a dedicated site, noting that chargers at the Semi factory in Nevada are also 1.2 MW capable.

Advertisement
-->

The short video featured a revamped design for the Semi’s charging port, which seems more sleek and akin to the NACS port found in Tesla’s other vehicles. It also showed the Tesla engineers cheering as the vehicle achieved 1.2 MW during its charging session. Dan Priestley explained the Semi’s updated charging plug in a post on X.

“The connector on the prior Semi was an early version (v2.4) of MCS. Not ‘proprietary’ as anyone could have used it. We couldn’t wait for final design to have >1MW capability, so we ran with what had been developed thus far. New Semi has latest MCS that is set to be standard,” the executive wrote in a post on X.

Check out the Tesla Semi’s sighting at the Nevada factory in the video below. 

Continue Reading