Connect with us

SpaceX

SpaceX’s Crew Dragon and Falcon 9 head to Pad 39A for historic launch debut

Crew Dragon and Falcon 9 B1051 stand vertical at Pad 39A during preparations for a late January static fire test. (SpaceX)

Published

on

NASA has confirmed that a Feb. 27th launch readiness review (LRR) prior to the orbital debut of SpaceX’s Crew Dragon spacecraft concluded with all parties remaining “go” for the historic launch.

Scheduled to liftoff at 2:48 am EST (07:48 UTC) on March 2nd, Falcon 9 and Crew Dragon can now begin to roll out to Launch Complex 39A (‘Pad 39A’) and complete final preflight checks approximately 24-48 hours before launch. After relentless work over the last few months, SpaceX has also largely completed a significant series of changes – many aesthetic – to Pad 39A, giving the historic complex a sleek new black and white paint scheme and enclosed tower (FSS).

Falcon 9, Crew Dragon “go” for launch

Following up the Flight Readiness Review (FRR) five days later, the completion of the Launch Readiness Review (LRR) effectively means that SpaceX can now proceed into launch operations a bit like any other mission, rolling the rocket and spacecraft out to Pad 39A, taking the assembly vertical, and finally completing (relatively) routine preflight preparations. SpaceX pad engineers and technicians have already completed a wet dress rehearsal (WDR) and static fire test over the last two months, meaning that they have already gained a significant amount of real-world experience working with and operating the brand new Crew Dragon spacecraft and its human-rated Falcon 9 rocket.

Advertisement

This milestone has been the better part of a decade in the making, beginning in 2009 or 2010 (depending on definitions) with funding from NASA dedicated to what would ultimately become the Commercial Crew Program (CCP). SpaceX did not begin to receive rewards or dedicated Crew Dragon-related funding until April 2011, when NASA awarded the company $75M to develop the spacecraft’s proposed integral abort system, relying on a newly developed Super Draco engine. In August 2012, NASA awarded Sierra Nevada, SpaceX, and Boeing several hundred million dollars each to continue serious development of their respective crewed spacecraft and launch vehicles, followed in 2014 by firm long-term contracts with SpaceX and Boeing to bring their Crew Dragon and Starliner vehicles to fruition.

 

Of note, SpaceX’s contract was valued at $2.6B, while Boeing received $4.2B, a full 60% more to complete an effectively identical task. Sadly, the US Congress systematically underfunded CCP during its formative years, largely a consequence of entrenched political and financial interests in preferentially funding NASA’s own SLS rocket and crewed Orion spacecraft above and at the cost of other rocket and spacecraft development initiatives. Insufficient funding likely contributed heavily to the years of delays subsequently suffered by the program and its commercial providers, pushing a nominal launch debut target from 2015 to 2017 before ultimately moving to 2018 and finally 2019, largely a result of unsurprising technical challenges faced by each provider as they entered into hardware- and testing-rich phases of development.

After approximately 5-6 years of concerted work, SpaceX and NASA are now as ready as they’ll ever be to conduct the first orbital launch of the Commercial Crew Program, to be followed as early as by Boeing’s own uncrewed orbital demonstration of its Starliner spacecraft. For those that have followed CCP for even part of its years-long saga, it’s more than a little surreal to be faced with the reality that such a milestone is barely two days distant.

Pad 39A: more than just a fresh coat

Meanwhile, SpaceX’s leased Pad 39A launch complex has undergone its own significant changes. Dating back to NASA’s Apollo Program, Pad 39A supported all but one of Saturn V’s 13 launches and more than 80 Space Shuttle launches before SpaceX took over the pad in 2014. In the five years the company has leased the facility, a range of changes have been made to the pad’s hardware, support facilities, and the primary metalwork known as service structures, one fixed (FSS) and one rolling (RSS). Aside from a bare skeleton of the RSS hinge, SpaceX has completely removed several hundred tons of Shuttle support hardware, while the FSS (the skyscraper-like rectangular tower) has remained largely unchanged, aside from the installation of a new level and Crew Dragon’s Crew Access Arm (CAA) on the ~110m (350 ft) tower.

Advertisement

 

Most recently, the company has pursued a series of visually distinct changes to tower, painting it almost entirely black with white highlights and installing partially transparent black plexiglass panels along the full length of at least 2-3 of its four walls. While the paint color is almost certainly aesthetically motivated (it matches Falcon 9, Crew Dragon, and the access arm), the decision to enclose all or most of the FSS will likely be very well received the astronauts and technicians it will ultimately support, especially if SpaceX manages to keep out Florida’s notorious mosquitoes.

If SpaceX’s uncrewed DM-1 Crew Dragon demonstration is a success, the company could follow it up with Crew Dragon’s first launch with astronauts aboard as early as July 2019, officially returning 39A to active place in human spaceflight and marking the end of more than eight years spent without a domestic solution for transporting US astronauts into orbit.


Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes!

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Elon Musk

SpaceX posts Starship booster feat that’s so nutty, it doesn’t even look real

The Super Heavy booster’s feat was so impressive that the whole maneuver almost looked like it was AI-generated.

Published

on

Credit: SpaceX/X

SpaceX has shared a video of a remarkable feat achieved by Starship’s Super Heavy booster during its 11th flight test.

The Super Heavy booster’s feat was so impressive that the whole maneuver, which was captured on video, almost looked like it was AI-generated.

Super Heavy’s picture perfect hover

As could be seen in the video shared by SpaceX, Starship’s Super Heavy booster, which is nearly 400 feet tall, smoothly returned to Earth and hovered above the Gulf of America for a few seconds before it went for its soft water landing. The booster’s picture-perfect maneuver before splashing down all but capped a near-flawless mission for Starship, which is about to enter its V3 era with Flight 12.

The booster’s balance and stability were so perfect that some users on X joked that the whole thing looked AI-generated. Considering the size of Super Heavy, as well as the fact that the booster was returning from space, the hovering display all but showed that SpaceX is dead serious about keeping its dominant lead in the spaceflight sector.

Starship V2’s curtain call

As noted in a Space.com report, Flight Test 11 achieved every major goal SpaceX had set for the mission, including deploying Starlink mass simulators, relighting Raptor engines in space, and executing a stable reentry for both the Starship Upper Stage and the Super Heavy booster. The feat also marked the second time a Super Heavy booster has been reflown, a milestone in SpaceX’s quest to make the entire Starship system fully reusable.

Advertisement

Starship’s V2 vehicle will now give way to the upgraded Starship V3, which is designed for faster turnaround and higher payload capacity. The Starship program is expected to pursue even more aggressive targets in the coming months as well, with Elon Musk stating on social media platform X that SpaceX will attempt a tower catch for Starship Upper Stage as early as spring 2026.

Continue Reading

Elon Musk

Starship’s next chapter: SpaceX eyes tower catch after flawless Flight 11

Elon Musk has revealed the tentative timeframe for Starship’s next milestone that would push the spacecraft’s reusability to a whole new level. 

Published

on

Credit: SpaceX

Elon Musk has revealed the tentative timeframe for Starship’s next milestone that would push the spacecraft’s reusability to a whole new level. 

Following Flight 11’s flawless mission, Musk noted on X that SpaceX will be aiming to catch the Starship Upper Stage with its launch tower as early as spring 2026. This should pave the way for SpaceX to start optimizing Starship for maximum reusability.

Flight 11 closes the Starship V2 chapter on a high note

Starship’s eleventh flight, which launched from Starbase, Texas, achieved every major mission objective. The Super Heavy booster completed a successful ascent, hover, and soft splashdown in the Gulf of America, while the upper stage executed an orbit burn, deployed Starlink simulators, and returned with a controlled reentry over the Indian Ocean.

This mission officially closed the chapter on the second-generation Starship and first-generation Super Heavy booster, and it set the stage for a redesigned vehicle built for orbital payload missions, propellant transfer, and beyond. It should be noted that Elon Musk has mentioned on X that Starship V3, at least if things go well, might be capable of reaching Mars.

Elon Musk confirms tower catch attempt set for spring

After Flight 11’s success, Musk confirmed that SpaceX will attempt to catch the Starship Upper Stage with its launch tower arms, fondly dubbed by the spaceflight community as “chopsticks,” in the coming months. Musk’s announcement came as a response to an X user who asked when the tower could start catching the Starship Upper Stage. In his reply, Musk simply wrote “Springtime.” 

Advertisement

Starship’s reusability is a key feature of the spacecraft, with SpaceX aiming to achieve a launch cadence that is almost comparable to conventional aircraft. For such a scenario to be feasible, launch tower catches of both Starship’s Upper Stage and its Super Heavy booster have to be routine.

Continue Reading

Elon Musk

SpaceX is preparing to launch Starship V2 one final time

The mission will test reentry dynamics, new landing burn configurations, and heat-shield upgrades.

Published

on

Credit: SpaceX/X

SpaceX is preparing to launch its final Starship V2 rocket on October 13, 2025. The launch closes the curtain on Starship V2 and marks the start of the ambitious spacecraft’s V3 era. 

Liftoff for Flight 11 is scheduled for 7:15 p.m. ET from Starbase in South Texas, with a 75-minute launch window. The mission will test reentry dynamics, new landing burn configurations, and heat-shield upgrades ahead of the transition to the next-generation Starship V3.

Starship V3 and beyond

Elon Musk confirmed on X that Starship V3 is already in production and could be “built & tested” and perhaps even flown before the end of 2025. The new version is expected to feature major performance and scale improvements, with Musk stating that Starship V3, provided that things go well, might be capable of reaching Mars, though V4 is more likely to perform a full-scale mission to the red planet. 

“Only one more V2 left to launch,” Musk wrote back in August following Starship’s successful Flight 10 mission. In another post, Musk stated that “Starship V3 is a massive upgrade from the current V2 and should be through production and testing by end of year, with heavy flight activity next year.”

Starship V2’s final mission

Flight 11 is designed to push the limits of Starship V2. SpaceX engineers have intentionally removed heat-shield tiles in vulnerable areas to analyze how the vehicle handles atmospheric reentry under stress, as noted in a Space.com report. The test will also refine subsonic guidance algorithms and new landing burn sequences for the Super Heavy booster that would be used for Starship V3.

Advertisement

“Super Heavy will ignite 13 engines at the start of the landing burn and then transition to a new configuration with five engines running for the divert phase. Previously done with three engines, the planned baseline for V3 Super Heavy will use five engines during the section of the burn responsible for fine-tuning the booster’s path, adding additional redundancy for spontaneous engine shutdowns. 

“The booster will then transition to its three center engines for the end of the landing burn, entering a full hover while still above the ocean surface, followed by shutdown and dropping into the Gulf of America,” SpaceX wrote in a post on its official website.

Continue Reading

Trending