News
SpaceX’s Crew Dragon gets tentative NASA target for first astronaut launch
New information from both NASA and the US Government Accountability Office (GAO) confirm that SpaceX is currently targeting – at least very tentatively so – Crew Dragon’s first launch with astronauts aboard no earlier than November 15th, 2019.
SpaceX is currently in the midst of a complex, high-stakes anomaly investigation after its flight-proven DM-1 Crew Dragon capsule suffered a catastrophic failure on April 20th. That investigation is nowhere near full closure due to the fact that the interests of NASA and the Commercial Crew Program (CCP) are equally interwoven into the work involved. Given the potential consequences of a similar failure occurring with astronauts (public or private) aboard, NASA is unlikely to accept anything less than a no-stone-left-unturned analysis and failure resolution, including any necessary design changes to Crew Dragon, no matter how far-reaching.
As NASASpaceflight.com’s Chris Gerbhardt notes, the Crew Dragon-related dates included in the NASA Flight Planning Integration Panel (FPIP) document are extremely tentative. They’re really only there to serve as placeholders for longer-term International Space Station planning, already a necessarily uncertain endeavor. Nevertheless, NASA’s NET November 15th 2019 planning date for Crew Dragon DM-2 (the first crewed test flight) was likely okayed by SpaceX – if not provided outright by the company – before going into an official FPIP.
In other words, November 15th is probably a real target but should be treated as an absolutely-positively-no-earlier-than launch date for Crew Dragon’s first astronaut-laden mission to the ISS. Back in late March (after DM-1’s successfully completion but before the capsule’s ground failure), anonymous Russian space industry sources confirmed that NASA’s DM-2 planning date was July 25th, while also indicating that the space agency was already preparing for delays that could push DM-2 as late as November 2019.
Specifically, an anonymous Roscosmos source told Russian outlet TASS that “the [DM-2] launch of Crew Dragon is likely to be postponed to November”. Given that that delay was rumored – albeit quasi-officially – and reported on nearly a month before Crew Dragon capsule C201 catastrophically exploded during testing, it doesn’t exactly inspire confidence in a November 2019 DM-2 planning date officially released by NASA more three months later.
Crew Dragon stumbles, but optimism remains
As is often said, things were going perfectly up to the point that they weren’t. Despite 2-3 months of NASA paperwork and review-related delays, SpaceX’s first flightworthy Crew Dragon performed flawlessly during orbital rendezvous, docking, departure, and reentry to the extent that NASA and SpaceX officials were joking on-webcast about their partial disbelief. NASA’s lengthy post-mission review effectively concluded as much, although there is always room for improvement.
Due to those aforementioned DM-1 delays (roughly early January to early March), DM-2’s Crew Dragon assembly and integration was delayed in turn to preserve access in case DM-1 revealed flaws or necessary changes. Things didn’t quite go as planned, but the delayed integration has turned out to be beneficial, preserving access to most of Dragon 2’s critical subsystems without requiring major disassembly before any anomaly-related changes are implemented.

Per a late-May update from CCP manager Kathy Lueders, SpaceX has effectively shifted its Crew Dragon hardware assignments over one to account for the loss of the DM-1 capsule, C201. The vehicle previously assigned to DM-2 has been reassigned to a critical in-flight abort (IFA) test, previously meant to use flight-proven C201. Per charts provided during Lueders’ presentation, SpaceX’s replacement DM-2 capsule (likely the capsule previously assigned to the following mission, Crew-1) is in a sort of holding pattern to allow for modifications that may be required after the DM-1 failure investigation concludes.
Per a previous December 2018 update from Lueders, SpaceX’s original DM-2 spacecraft (now assigned to IFA) was expected to be fully assembled, shipped to Pad 39A, and ready for launch by June 2019. Accounting for DM-1’s delays, that spacecraft could likely be ready for the abort test as early as July or August, which meshes with post-anomaly indications that IFA is now scheduled no earlier than fall (September 2019)

All things considered, a pragmatic analysis suggests that Crew Dragon‘s DM-2 launch will most likely happen no earlier than Q1 2020, although miracles (and nightmares) are certainly possible. For the time being, all that really matters to SpaceX is wrapping up the C201 failure investigation as quickly and accurately as possible. Only after the company has publicly announced the results of that investigation should any IFA or DM-2 launch dates be taken with anything less than a full shaker of salt.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.
Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage.
These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.
FSD mileage milestones
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities.
City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos.
Tesla’s data edge
Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own.
So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.”
“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X.
News
Tesla starts showing how FSD will change lives in Europe
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options.
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Officials see real impact on rural residents
Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”
The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.
What the Ministry for Economic Affairs and Transport says
Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents.
“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe.
“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post.
News
Tesla China quietly posts Robotaxi-related job listing
Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China.
As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Robotaxi-specific role
The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi.
Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.
China Robotaxi launch
China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.
This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees.


