News
SpaceX Dragon delivers supplies, upgraded solar arrays to space station
Following a flawless Saturday launch, a SpaceX Cargo Dragon spacecraft successfully docked with the International Space Station on Sunday morning, delivering several tons of supplies and a second set of upgraded solar arrays to the orbital outpost.
In what has become a rare event for the company, an all-new Falcon 9 rocket and Dragon spacecraft were assigned to the mission – SpaceX’s latest launch under NASA’s Commercial Resupply Services (CRS) program. Carrying Dragon C211 (the 11th Dragon 2 capsule) and a new single-use Falcon upper stage, Falcon 9 booster B1076 lifted off for the first time from NASA’s Kennedy Space Center at 2:20 pm EST (19:20 UTC) on Saturday, November 26th.
Falcon 9 performed as expected and sailed through its 159th consecutively successful launch since January 2017. The rocket’s upper stage reached orbit and booster B1076 touched down on drone ship Just Read The Instructions (JRTI) around nine minutes after liftoff. Cargo Dragon deployed from Falcon 9’s upper stage a few minutes later, kicking off orbit-raising and rendezvous operations.
17 hours and 19 minutes later, Dragon successfully docked with the International Space Station (ISS), making CRS-26’s rendezvous the second fastest in SpaceX history and the fastest completed by a Cargo Dragon. Dragon docked to the ISS carrying more than 3.5 tons (7777 lb) of cargo, including one ton of crew supplies and one ton of science experiments.
The single biggest payload, however, was the second of three sets of upgraded solar arrays that will eventually increase the total amount of power available to the ISS and its crew of international astronauts. Thanks to a new Roll-Out Solar Array technology that allows each of the six planned arrays to roll up into a compact cylinder, NASA has been able to fit two arrays at once inside the unpressurized ‘trunk’ section of SpaceX’s Cargo Dragon spacecraft. Each pair of arrays weighs around 1.2 tons (~2600 lb).

SpaceX launched the first pair of iROSA arrays in June 2021 and will likely launch the third and final pair in 2023. Combined, the six new iROSAs will initially be able to produce up to 168 kilowatts, though NASA also says it will only use a maximum of 120 kilowatts. Including the station’s old arrays, which will continue to be used in a limited capacity, the iROSA upgrade is expected to boost the total amount of power available for science and operations by 20-30%.
CRS-26 was SpaceX’s 54th launch of 2022, leaving the company just six launches away from hitting CEO Elon Musk’s target of 60 launches this year. SpaceX has at least one more launch – a Japanese Moon lander – scheduled before the end of the month. Out of the last eight months, only one has had less than five SpaceX launches, meaning that the odds are now firmly in favor of SpaceX achieving its goal. The Soviet Union’s R-7 rocket family currently holds the record for most successful launches in a calendar year, with 61 launches completed in 1980.
News
Tesla is improving Giga Berlin’s free “Giga Train” service for employees
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
New shuttle route
As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.
“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.
Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.
Tesla pushes for majority rail commuting
Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.
The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.
News
Tesla Model 3 and Model Y dominate China’s real-world efficiency tests
The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.
Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions.
The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.
Tesla secures top efficiency results
Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report.
These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla
Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker.
“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.
Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.
Elon Musk
Elon Musk reveals what will make Optimus’ ridiculous production targets feasible
Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.
Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.
Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.
The highest volume product
Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.
Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.
Self-replication is key
During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.
The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems.
If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.
