News
SpaceX’s drone ships near return-to-action with Block 5 Falcon 9 landings
Teslarati photographer Pauline Acalin’s recent trips to drone ship Just Read The Instructions’ berth in Port of San Pedro shows that SpaceX technicians are nearly done preparing the hibernating vessel for a return to Falcon 9 rocket recoveries in the Pacific Ocean, a ten-month drought likely to end for good on July 20th.
Although it’s hard to believe, SpaceX’s West Coast autonomous spaceport drone ship (ASDS) has been effectively marooned at its Port of Los Angeles berth for more than nine full months, with the vessel’s last recovery occurring just after the October 9 launch of ten Iridium NEXT satellites, the fourth of five SpaceX Vandenberg launches in 2017 (and the fourth of four West Coast booster landings).

SpaceX’s West coast drone ship Just Read The Instructions getting some much needed fresh paint in 2017. (Instagram, anonymous)
Three months after that October mission and booster recovery, SpaceX expended their next California launch and marked the beginning of a streak of eight missions where flight-proven Block 3 and 4 boosters could have been recovered but no attempts were made. While intermixed with the spectacle of Falcon Heavy’s dual side booster landings at LZ-1, the debut launch and recovery of Falcon 9 Block 5, and two other Block 4 booster recoveries, the majority of SpaceX’s launches since December 2017 have been treated as expendable – put simply, the company decided that recovering and refurbishing twice-flown boosters of older Falcon 9 blocks was not worth the effort and expense.
Instead, those well-worn boosters were expended in the Pacific and Atlantic Oceans after partially supporting a series of experimental tests designed to gather additional data on the recovery envelope of SpaceX’s partially reusable rockets. The rationale makes sense – SpaceX fundamentally sacrificed some of its older, less-reusable Falcon 9 boosters for the sake of knowledge that may allow their highly reusable Falcon 9 Block 5 predecessors a better chance of successfully landing even after exceptionally fast, hot, and high-energy recoveries, a necessity if the upgraded rockets are to be reused 10 to 100 times, as is the goal.
Although Just Read The Instructions spent several months without a full complement of maneuvering thrusters, thanks in part to efforts to keep its besieged East coast sister Of Course I Still Love You operational, photographer Pauline Acalin’s photos over the last several months show that the vessel now has four full thrusters installed and ready to bring it back into rocket recovery action in the Pacific Ocean.
- SpaceX’s drone ship Just Read The Instructions and fairing catcher Mr Steven at their Port of San Pedro berths, May 2018. Note the four bright blue thrusters visible aboard JRTI, three installed and one on deck. (Pauline Acalin)
- The aggressive Atlantic Ocean landing of Thaicom-8’s Falcon 9 first stage. (SpaceX)
- Iridium-1’s successful and scenic landing on Pacific drone ship JRTI, January 2017. This could be an increasingly rare occurrence in the Pacific, thanks to SpaceX’s new land-based landing zone. (SpaceX)
Still, the abrupt return to expendable rocket launches after a year – 2017 – filled to the brim with 18 of 18 successful launches and 14 of 14 successful landings led to a decidedly fascinating vein of disapproval in the SpaceX enthusiast and broader spaceflight fan communities – people had grown accustomed to the adrenaline-soaked thrill of routine Falcon 9 rocket landings. Some expressed worries that regularly and intentionally expending large hunks of metal in the ocean could harm their ecosystems and was tantamount to littering. None the wiser, every other launch provider in the world continues to expend all of their rocket boosters without any attempts at recovery like the nearly all non-Shuttle rocket launches in the past six decades, and their tepidly reusable next-generation rockets are unlikely to even begin attempting hardware recovery until the mid-2020s at the earliest.
Frankly, SpaceX’s abrupt successes with orbital-class rocket recovery struck a chord with observers, demonstrating just how intuitive attempting to recover expensive rocket hardware really is, while also bringing into clear focus the actual insanity of failing to try and of the seemingly ad-hoc rationalization of expendable rocketry. Thankfully, we still have SpaceX, and the company’s spate of rocket booster sacrifices is likely just one expendable launch away from coming to an effective end for the indefinite future, with that particular launch – CRS-15 – scheduled less than two weeks from now, on June 29th.
- B1045, tasked with launching NASA’s TESS exoplanet observatory, roughly 24 hours before liftoff. (Tom Cross)
- After launching in April 2018, B1045 landed on OCISLY and is being refurbished for a second launch in just 5 days, on June 29. (Tom Cross)
After CRS-15, which will probably see its twice-flown Block 4 booster expended in the Atlantic, a combination of Block 5 Falcon 9s and Heavies will theoretically bring to an end the practice of expending orbital rocket boosters, at least on SpaceX’s watch. Considering that the upgraded boosters have been designed and built to launch as many as ten times with minimal refurbishment and potentially 100+ times with regular maintenance, the opportunity cost of an expended Block 5 rocket booster is so high that it is difficult to imagine SpaceX will be easily swayed to expend one until it’s flown at least several times prior.
We here at Teslarati eagerly await the imminent demise of expendable rockets, set to begin in earnest – at least for SpaceX – around July 19th and 20th with two Falcon 9 Block 5 launches on two coasts, one with Telstar 19V (Florida) and the other with Iridium-7 (California).
Follow us for live updates, peeks behind the scenes, and photos from Teslarati’s East and West coast photographers.
Teslarati – Instagram – Twitter
Tom Cross – Twitter
Pauline Acalin – Twitter
Eric Ralph – Twitter
News
Tesla Robotaxi ride-hailing without a Safety Monitor proves to be difficult
Tesla Robotaxi ride-hailing without a Safety Monitor is proving to be a difficult task, according to some riders who made the journey to Austin to attempt to ride in one of its vehicles that has zero supervision.
Last week, Tesla officially removed Safety Monitors from some — not all — of its Robotaxi vehicles in Austin, Texas, answering skeptics who said the vehicles still needed supervision to operate safely and efficiently.
BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor
Tesla aimed to remove Safety Monitors before the end of 2025, and it did, but only to company employees. It made the move last week to open the rides to the public, just a couple of weeks late to its original goal, but the accomplishment was impressive, nonetheless.
However, the small number of Robotaxis that are operating without Safety Monitors has proven difficult to hail for a ride. David Moss, who has gained notoriety recently as the person who has traveled over 10,000 miles in his Tesla on Full Self-Driving v14 without any interventions, made it to Austin last week.
He has tried to get a ride in a Safety Monitor-less Robotaxi for the better part of four days, and after 38 attempts, he still has yet to grab one:
Wow just wow!
It’s 8:30PM, 29° out ice storm hailing & Tesla Robotaxi service has turned back on!
Waymo is offline & vast majority of humans are home in the storm
Ride 38 was still supervised but by far most impressive yet pic.twitter.com/1aUnJkcYm8
— David Moss (@DavidMoss) January 25, 2026
Tesla said last week that it was rolling out a controlled test of the Safety Monitor-less Robotaxis. Ashok Elluswamy, who heads the AI program at Tesla, confirmed that the company was “starting with a few unsupervised vehicles mixed in with the broader Robotaxi fleet with Safety Monitors,” and that “the ratio will increase over time.”
This is a good strategy that prioritizes safety and keeps the company’s controlled rollout at the forefront of the Robotaxi rollout.
However, it will be interesting to see how quickly the company can scale these completely monitor-less rides. It has proven to be extremely difficult to get one, but that is understandable considering only a handful of the cars in the entire Austin fleet are operating with no supervision within the vehicle.
News
Tesla gives its biggest hint that Full Self-Driving in Europe is imminent
Tesla has given its biggest hint that Full Self-Driving in Europe is imminent, as a new feature seems to show that the company is preparing for frequent border crossings.
Tesla owner and influencer BLKMDL3, also known as Zack, recently took his Tesla to the border of California and Mexico at Tijuana, and at the international crossing, Full Self-Driving showed an interesting message: “Upcoming country border — FSD (Supervised) will become unavailable.”
FSD now shows a new message when approaching an international border crossing.
Stayed engaged the whole way as we crossed the border and worked great in Mexico! pic.twitter.com/bDzyLnyq0g
— Zack (@BLKMDL3) January 26, 2026
Due to regulatory approvals, once a Tesla operating on Full Self-Driving enters a new country, it is required to comply with the laws and regulations that are applicable to that territory. Even if legal, it seems Tesla will shut off FSD temporarily, confirming it is in a location where operation is approved.
This is something that will be extremely important in Europe, as crossing borders there is like crossing states in the U.S.; it’s pretty frequent compared to life in America, Canada, and Mexico.
Tesla has been working to get FSD approved in Europe for several years, and it has been getting close to being able to offer it to owners on the continent. However, it is still working through a lot of the red tape that is necessary for European regulators to approve use of the system on their continent.
This feature seems to be one that would be extremely useful in Europe, considering the fact that crossing borders into other countries is much more frequent than here in the U.S., and would cater to an area where approvals would differ.
Tesla has been testing FSD in Spain, France, England, and other European countries, and plans to continue expanding this effort. European owners have been fighting for a very long time to utilize the functionality, but the red tape has been the biggest bottleneck in the process.
Tesla Europe builds momentum with expanding FSD demos and regional launches
Tesla operates Full Self-Driving in the United States, China, Canada, Mexico, Puerto Rico, Australia, New Zealand, and South Korea.
Elon Musk
SpaceX Starship V3 gets launch date update from Elon Musk
The first flight of Starship Version 3 and its new Raptor V3 engines could happen as early as March.
Elon Musk has announced that SpaceX’s next Starship launch, Flight 12, is expected in about six weeks. This suggests that the first flight of Starship Version 3 and its new Raptor V3 engines could happen as early as March.
In a post on X, Elon Musk stated that the next Starship launch is in six weeks. He accompanied his announcement with a photo that seemed to have been taken when Starship’s upper stage was just about to separate from the Super Heavy Booster. Musk did not state whether SpaceX will attempt to catch the Super Heavy Booster during the upcoming flight.
The upcoming flight will mark the debut of Starship V3. The upgraded design includes the new Raptor V3 engine, which is expected to have nearly twice the thrust of the original Raptor 1, at a fraction of the cost and with significantly reduced weight. The Starship V3 platform is also expected to be optimized for manufacturability.
The Starship V3 Flight 12 launch timeline comes as SpaceX pursues an aggressive development cadence for the fully reusable launch system. Previous iterations of Starship have racked up a mixed but notable string of test flights, including multiple integrated flight tests in 2025.
Interestingly enough, SpaceX has teased an aggressive timeframe for Starship V3’s first flight. Way back in late November, SpaceX noted on X that it will be aiming to launch Starship V3’s maiden flight in the first quarter of 2026. This was despite setbacks like a structural anomaly on the first V3 booster during ground testing.
“Starship’s twelfth flight test remains targeted for the first quarter of 2026,” the company wrote in its post on X.




