News
SpaceX pushes boundaries of fairing recovery with breathtaking sunrise launch [photos]
SpaceX has soared past the halfway point of completion for Iridium’s next-generation NEXT constellation with the successful launch of satellites 41-50 earlier this morning. SpaceX has three additional launches contracted with Iridium for a total of eight. Despite intentionally ditching the flight-proven first stage booster in the Pacific Ocean, SpaceX attempted to recover one half of the payload fairing; an effort acknowledged to be predominately experimental at this point.
- F9 B1041 gives one final swan song with the successful launch of 10 more Iridium NEXT satellites. (Pauline Acalin)
- Although fog and camera difficulties slightly marred the shot, note the details in Falcon 9’s normally white-hot exhaust. (Pauline Acalin)
- Falcon 9 1041 rises above a sea of fog for one last mission to orbit. Half of its fairing made a surprise appearance in port on Saturday. (Pauline Acalin)
Iridium-5 continues a recent trend of monthly launches out of SpaceX’s Vandenberg Air Force Base launch facilities – the company’s SLC-4E pad is known to take a bit longer than its East coast brethren for refurbishment and repairs between launches, typically maxing out approximately one launch per month. This launch also marks another flight-proven booster intentionally expended, likely in part because the West Coast drone ship Just Read The Instructions is currently out of commission, awaiting the delivery of critical subsystems stripped to repair the Eastern OCISLY.
As of posting, all 10 Iridium NEXT satellites have been successfully deployed into low Earth orbit, marking the successful completion of this mission. On the recovery side of the mission, SpaceX CEO Elon Musk had initially teased Mr Steven’s upcoming fairing catch attempt – his silence since providing a T-0 around 7:44 am PST presumably speaks to the experimental nature of these fairing recovery efforts, and hints that this attempt may not have been successful.
GPS guided parafoil twisted, so fairing impacted water at high speed. Air wake from fairing messing w parafoil steering. Doing helo drop tests in next few weeks to solve.
— Elon Musk (@elonmusk) March 30, 2018
A couple hours after launch, Musk took to Twitter to confirm that this fairing recovery effort had failed, largely due to the complexity of safely parafoiling such a large, fast, and ungainly object. “[Helicopter] drop tests” are planned for coming weeks in order to put to bed the problems ailing fairing recovery. As SpaceX announcer and materials engineer Michael Hammersley noted, “the ultimate goal is full recovery and reuse of the entire vehicle,” and experimental fairing recovery efforts push SpaceX one step closer to that ambition.
- F9 B1041 arrives in port after its first successful mission, Iridium-3, in October 2017. (Pauline Acalin)
- 1041 flew for its second and final time earlier this morning, sans any landing aboard JRTI. (Pauline Acalin)
- B1041 presumably soft-landed in the Pacific, as did its fairing. (Pauline Acalin)
- RIP. (Pauline Acalin)
Space (regulation) oddity
Perhaps the most unusual feature of this launch was an announcement soon after the webcast began that NOAA (the National Ocean and Atmospheric Administration) apparently restricted SpaceX’s ability to provide live coverage of Falcon 9’s upper stage once in orbit, and the webcast thus ended moments after the second stage Merlin Vacuum engine shut off. By all appearances, this is fairly unprecedented: NOAA is tasked with “licensing…operations of private space-based remote sensing systems” with their Commercial Remote Sensing Regulatory Affairs (CRSRA) branch, but they’ve been quite inept and heavy-handed in their implementation of Earth imaging regulation. Nominally, the purpose of that regulation is to protect sensitive US security facilities and activities from the unblinking eyes of private, orbital imaging satellites, but NOAA has quite transparently exploited its power in ways that create extreme uncertainty and near-insurmountable barriers to entry for prospective commercial Earth-imaging enterprises.
What an absolutely beautiful launch at Vandenberg this morning. Congratulations to SpaceX on another successful mission accomplished! #SpaceX #Iridium5 @Teslarati pic.twitter.com/hsp7H5bv8J
— Pauline Acalin (@w00ki33) March 30, 2018
Presumably, this protects their (and their prime contractors’) vested interest in NOAA’s continuing quasi-monopoly over Earth sciences and weather-related satellite production and operations, a segment of the agency’s budget known to aggressively devour as much of NOAA’s budget as practicable. In this sense, something as arbitrary as preventing a launch provider like SpaceX from showing live, low-resolution (functionally useless) video feeds from orbit would be thoroughly disappointing, but in no way surprising. In this case, the restriction is comically transparent in its blatant inconsistency: SpaceX has flown more than 50 launches over more than a decade, all of which featured some form of live coverage of the upper stage once in orbit, and none of which NOAA objected to. Fingers crossed that this absurd restriction can be lifted sooner than later.
- No fairing snack for Mr Steven this time around. (Pauline Acalin)
- PAZ’s recovered fairing half sadly cracked beyond repair while being hauled aboard Mr Steven. (Pauline Acalin)
Follow us for live updates, behind-the-scenes sneak peeks, and a sea of beautiful photos from our East and West coast photographers.
Teslarati – Instagram – Twitter
Tom Cross – Twitter
Pauline Acalin – Twitter
Eric Ralph – Twitter
Elon Musk
Tesla AI5 chip nears completion, Elon Musk teases 9-month development cadence
The Tesla CEO shared his recent insights in a post on social media platform X.
Tesla’s next-generation AI5 chip is nearly complete, and work on its successor is already underway, as per a recent update from Elon Musk.
The Tesla CEO shared his recent insights in a post on social media platform X.
Musk details AI chip roadmap
In his post, Elon Musk stated that Tesla’s AI5 chip design is “almost done,” while AI6 has already entered early development. Musk added that Tesla plans to continue iterating rapidly, with AI7, AI8, AI9, and future generations targeting a nine-month design cycle.
He also noted that Tesla’s in-house chips could become the highest-volume AI processors in the world. Musk framed his update as a recruiting message, encouraging engineers to join Tesla’s AI and chip development teams.
Tesla community member Herbert Ong highlighted the strategic importance of the timeline, noting that faster chip cycles enable quicker learning, faster iteration, and a compounding advantage in AI and autonomy that becomes increasingly difficult for competitors to close.
AI5 manufacturing takes shape
Musk’s comments align with earlier reporting on AI5’s production plans. In December, it was reported that Samsung is preparing to manufacture Tesla’s AI5 chip, accelerating hiring for experienced engineers to support U.S. production and address complex foundry challenges.
Samsung is one of two suppliers selected for AI5, alongside TSMC. The companies are expected to produce different versions of the AI5 chip, with TSMC reportedly using a 3nm process and Samsung using a 2nm process.
Musk has previously stated that while different foundries translate chip designs into physical silicon in different ways, the goal is for both versions of the Tesla AI5 chip to operate identically. AI5 will succeed Tesla’s current AI4 hardware, formerly known as Hardware 4, and is expected to support the company’s Full Self-Driving system as well as other AI-driven efforts, including Optimus.
News
Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.
The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.
The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring.

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.
The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.
ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.
“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.
“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.
News
Tesla Sweden uses Megapack battery to bypass unions’ Supercharger blockade
Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery.
Tesla Sweden has successfully launched a new Supercharger station despite an ongoing blockade by Swedish unions, using on-site Megapack batteries instead of traditional grid connections. The workaround has allowed the Supercharger to operate without direct access to Sweden’s electricity network, which has been effectively frozen by labor action.
Tesla has experienced notable challenges connecting its new charging stations to Sweden’s power grid due to industrial action led by Seko, a major Swedish trade union, which has blocked all new electrical connections for new Superchargers. On paper, this made the opening of new Supercharger sites almost impossible.
Despite the blockade, Tesla has continued to bring stations online. In Malmö and Södertälje, new Supercharger locations opened after grid operators E.ON and Telge Nät activated the sites. The operators later stated that the connections had been made in error.
More recently, however, Tesla adopted a different strategy altogether. Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery, as noted in a Dagens Arbete (DA) report.
Because the Supercharger station does not rely on a permanent grid connection, Tesla was able to bypass the blocked application process, as noted by Swedish car journalist and YouTuber Peter Esse. He noted that the Arlandastad Supercharger is likely dependent on nearby companies to recharge the batteries, likely through private arrangements.
Eight new charging stalls have been launched in the Arlandastad site so far, which is a fraction of the originally planned 40 chargers for the location. Still, the fact that Tesla Sweden was able to work around the unions’ efforts once more is impressive, especially since Superchargers are used even by non-Tesla EVs.
Esse noted that Tesla’s Megapack workaround is not as easily replicated in other locations. Arlandastad is unique because neighboring operators already have access to grid power, making it possible for Tesla to source electricity indirectly. Still, Esse noted that the unions’ blockades have not affected sales as much.
“Many want Tesla to lose sales due to the union blockades. But you have to remember that sales are falling from 2024, when Tesla sold a record number of cars in Sweden. That year, the unions also had blockades against Tesla. So for Tesla as a charging operator, it is devastating. But for Tesla as a car company, it does not matter in terms of sales volumes. People charge their cars where there is an opportunity, usually at home,” Esse noted.








