SpaceX
This is how big SpaceX’s Falcon Heavy and BFR rocket is in real life
An artist duo has published an impressive, unofficial look at the true size of SpaceX’s reusable rockets, using a brilliant combination of 3D modeling and animation to really compare Falcon 9, Falcon Heavy, and BFR with recognizable landmarks and cityscapes, lending an incredible sense of scale to the extraordinary feats of engineering that SpaceX routinely launches, lands, and relaunches every month.
In the video, posted on the Corridor YouTube channel on June 19, VFX artist Wren Weichman — known on social media as “sirwrender” — acts as the host of a brief clip where he tours viewers around an office and several cityscapes populated with scale-model 3D renders of all of SpaceX’s various rockets, both those currently operational and those under development. His point is undeniably true: human brains simply are not accustomed to or easily able to build accurate mental pictures of vast real-world objects. The reality almost invariably comes as a visceral shock to onlookers, even those that know better than to trust their perceptual instincts. Be it grand natural wonders or human constructs, humans are quite simply bad at estimating scale until they do so in person.
- SpaceX technicians work at the base of Falcon 9 B1039 ahead of launch, CRS-14. (Tom Cross)
- The scale of Falcon Heavy. (Photo: Tom Cross)
- The hypersonic X-15 and Falcon 9 S1, with a common 737-800 airliner on the right. All vehicles are roughly to scale. (Wikipedia, SpaceX)
With the case of rockets and their launches, this is doubly true and further exaggerated by the fact that launch webcasts, videos, and photos often feature unfamiliar backgrounds of industrial equipment or a perfectly featureless skies, all while almost invariably excluding (for good reasons…) familiarly scaled features like people, cars, animals, or everyday buildings. In many cases, preparations for rocket launches are often the absolute best times available for photos that truly give a sense of scale, as it’s actually reasonably safe to be and work in close proximity to an unfueled rocket.
With the help of models of Falcon 9, Heavy, and BFR created by 3D design Reese Wilson (@AstroReeseW), Wren (@sirwrender) takes those scale shortcomings to task and does his best to create examples with the very cues that average fans and viewers rarely get to see alongside real-life rockets.
- Wren’s example of a rough, uneducated estimate of Falcon 9 legs based on easily available images and livestreams. (sirwrender/astroreesew)
- The full-sized Falcon 9 landing leg is just a smidge larger in reality. (sirwrender/astroreesew)
- A handful of rather absurd cases also serve to illustrate just how huge SpaceX’s rockets are. (sirwrender/astroreesew)
- Just your run-of-the-mill pile of Falcon Heavies in suburban New York City. (sirwrender/astroreesew)
The video really needs to be watched to be fully appreciated – my favorite segment is near the start, where Wren notes that viewers likely expect some of the seemingly insignificant components, projecting a layperson size-estimate of a Falcon 9 landing leg inside his workplace before expanding it all the way to full-scale, at which point the leg literally does not fit inside the office. Visualizations of BFR further show that the crewed Mars rocket will effortlessly dwarf the already massive Falcon 9 and Heavy.
Regardless of whether you were or were not intimately familiar with the actual scale of SpaceX’s many rockets, Wren and Reese make for a seriously entertaining (and educational) combination. Here’s to hoping the duo ventures into more spaceflight and SpaceX videos in the future! Enjoy the video below.
Elon Musk
Elon Musk shares SpaceX’s directive that destroys a prevalent media narrative
Musk’s comments followed Starlink’s initiatives for people affected by severe flooding in Indonesia and Cyclone Ditwah in Sri Lanka.
Elon Musk recently shared SpaceX’s standing policy to offer free Starlink service during natural disasters worldwide, highlighting the company’s commitment to pursue aid over profit during times of need.
Musk’s comments followed Starlink’s initiatives for people affected by severe flooding in Indonesia and Cyclone Ditwah in Sri Lanka.
Starlink activates free service in Indonesia and Sri Lanka
Starlink recently announced free service for those impacted by severe flooding in Indonesia’s Sumatra region, partnering with the government to deploy terminals rapidly to the hardest-hit areas. The offer extends to new and existing customers through December, restoring connectivity in zones where traditional networks have failed due to infrastructure damage.
Musk quoted the post on X, writing, “SpaceX standard policy is to make Starlink free whenever there is a natural disaster somewhere in the world. It would not be right to profit from misfortune.”
Starlink extended the same relief to Sri Lanka amid Cyclone Ditwah, coordinating with local authorities for additional support. The cyclone battered the island nation with heavy rains and winds, disrupting communications for thousands. Free access also lasts until year-end, emphasizing Starlink’s role in bridging gaps during crises.
“For those affected by the severe flooding in Indonesia and Sri Lanka in the aftermath of Cyclone Ditwah, Starlink is providing free service to new and existing customers through the end of December 2025. We’re also working with the Indonesian government to rapidly deploy terminals and restore connectivity to the hardest-hit areas on Sumatra, as well as with the Sri Lankan government to provide additional assistance,” Starlink wrote in a post on its official website.
Musk’s companies routinely provide aid
Musk’s firms have a track record of providing critical support in crises, often without fanfare, challenging portrayals of him as a comic book villain intent on enriching himself on the backs of a suffering populace. In January 2024 alone, Tesla opened Superchargers for free in Japan’s Hokuriku region after a magnitude 7.6 earthquake killed at least 55 and injured hundreds.
Similar efforts include Starlink deployments for the 2023 Maui wildfires, 2024 Hurricane Helene in North Carolina, and floods in Texas, where the service was used to help facilitate emergency coordination. These actions, which total millions in waived fees and logistics, demonstrate a proactive ethos among Musk’s companies, with Musk noting in past interviews that such aid stems from engineering solutions over optics.
The initiatives also provide a direct rebuttal of Musk’s characterization on mainstream media, which tends to lean negatively. This has become much more notable in recent years as Musk adopted more conservative policies. These negative sentiments came to a head earlier this year when Tesla stores, vehicles, and even some owners, were attacked during waves of anti-Tesla protests.
Elon Musk
SpaceX’s Starship FL launch site will witness scenes once reserved for sci-fi films
A Starship that launches from the Florida site could touch down on the same site years later.
The Department of the Air Force (DAF) has released its Final Environmental Impact Statement for SpaceX’s efforts to launch and land Starship and its Super Heavy booster at Cape Canaveral Space Force Station’s SLC-37.
According to the Impact Statement, Starship could launch up to 76 times per year on the site, with Super Heavy boosters returning within minutes of liftoff and Starship upper stages landing back on the same pad in a timeframe that was once only possible in sci-fi movies.
Booster in Minutes, Ship in (possibly) years
The EIS explicitly referenced a never-before-seen operational concept: Super Heavy boosters will launch, reach orbit, and be caught by the tower chopsticks roughly seven minutes after liftoff. Meanwhile, the Starship upper stage will complete its mission, whether a short orbital test, lunar landing, or a multi-year Mars cargo run, and return to the exact same SLC-37 pad upon mission completion.
“The Super Heavy booster landings would occur within a few minutes of launch, while the Starship landings would occur upon completion of the Starship missions, which could last hours or years,” the EIS read.
This means a Starship that departs the Florida site in, say, 2027, could touch down on the same site in 2030 or later, right beside a brand-new stack preparing for its own journey, as noted in a Talk Of Titusville report. The 214-page document treats these multi-year round trips as standard procedure, effectively turning the location into one of the world’s first true interplanetary spaceports.
Noise and emissions flagged but deemed manageable
While the project received a clean bill of health overall, the EIS identified two areas requiring ongoing mitigation. Sonic booms from Super Heavy booster and Starship returns will cause significant community annoyance” particularly during nighttime operations, though structural damage is not expected. Nitrogen oxide emissions during launches will also exceed federal de minimis thresholds, prompting an adaptive management plan with real-time monitoring.
Other impacts, such as traffic, wildlife (including southeastern beach mouse and Florida scrub-jay), wetlands, and historic sites, were deemed manageable under existing permits and mitigation strategies. The Air Force is expected to issue its Record of Decision within weeks, followed by FAA concurrence, setting the stage for rapid redevelopment of the former site into a dual-tower Starship complex.
SpaceX Starship Environmental Impact Statement by Simon Alvarez
Elon Musk
SpaceX maintains unbelievable Starship target despite Booster 18 incident
It appears that it will take more than an anomaly to stop SpaceX’s march towards Starship V3’s refinement.
SpaceX recently shared an incredibly ambitious and bold update about Starship V3’s 12th test flight.
Despite the anomaly that damaged Booster 18, SpaceX maintained that it was still following its plans for the upgraded spacecraft and booster for the coming months. Needless to say, it appears that it will take more than an anomaly to stop SpaceX’s march towards Starship V3’s refinement.
Starship V3 is still on a rapid development path
SpaceX’s update was posted through the private space company’s official account on social media platform X. As per the company, “the Starbase team plans to have the next Super Heavy booster stacked in December, which puts it on pace with the test schedule planned for the first Starship V3 vehicle and associated ground systems.”
SpaceX then announced that Starship V3’s maiden flight is still expected to happen early next year. “Starship’s twelfth flight test remains targeted for the first quarter of 2026,” the company wrote in its post on X.
Elon Musk mentioned a similar timeline on X earlier this year. In the lead up to Starshp Flight 11, which proved flawless, Musk stated that “Starship V3 is a massive upgrade from the current V2 and should be through production and testing by end of year, with heavy flight activity next year.” Musk has also mentioned that Starship V3 should be good enough to use for initial Mars missions.
Booster 18 failure not slowing Starship V3’s schedule
SpaceX’s bold update came after Booster 18 experienced a major anomaly during gas system pressure testing at SpaceX’s Massey facility in Starbase, Texas. SpaceX confirmed in a post on X that no propellant was loaded, no engines were installed, and personnel were positioned at a safe distance when the booster’s lower section crumpled, resulting in no injuries.
Still, livestream footage showed significant damage around the liquid oxygen tank area of Booster 18, leading observers to speculate that the booster was a total loss. Booster 18 was among the earliest vehicles in the Starship V3 series, making the failure notable. Despite the setback, Starship V3’s development plans appear unchanged, with SpaceX pushing ahead of its Q1 2026 test flight target.







