News
SpaceX sets Dragon reuse record, debuts drone ship on first launch in two months
Update #2: After a 24-hour weather delay, conditions were far more favorable on August 29th, allowing a SpaceX Falcon 9 rocket to lift off for the first time in almost two months and send a cargo-filled Dragon spacecraft on its way to the International Space Station (ISS).
Aside from marking the end of SpaceX’s longest launch hiatus in two years, CRS-23’s successful liftoff also means that the company has smashed the world record for fastest orbital space capsule reuse. As part of Cargo Dragon 2’s first reuse ever, SpaceX launched Dragon C208 just seven and a half months (227d) after its first orbital reentry and splashdown, handily beating the previous record of 328 days. Additionally, flying for the fourth time, Falcon 9 booster B1064 became the first rocket to land on brand new SpaceX drone ship A Shortfall of Gravitas (ASOG) after sending Dragon C208 on its way to the ISS.
Getting a nice view of CRS-23's trunk as it separates, confirming no trunk cargo on this flight. pic.twitter.com/ZeJjviKqFE— Jonathan McDowell (@planet4589) August 29, 2021

Update: Although the weather forecast has worsened, SpaceX remains on track to attempt its first launch in eight weeks – a mission that will also smash one of the company’s orbital spacecraft reusability records.
While mostly mundane, a system preceding Tropical Storm Ida is producing conditions less than optimal for rocket launches, raising the risk of in-flight lightning strikes and the chances of Falcon 9 and Dragon flying through clouds containing precipitation (rain/ice/etc). Ultimately, that means that there’s just a 40% chance (down from 50% in the last few days) that weather conditions will be favorable for SpaceX to launch CRS-23. Regardless, barring a surprise announcement in the next few hours, it appears that there’s enough of a chance that SpaceX and NASA will still make an attempt.
If all goes according to plan, a flight-proven Falcon 9 rocket will send an upgraded Cargo Dragon on the way to orbit for the second time in seven months – almost twice as fast a turnaround as SpaceX’s ~340-day record for orbital spacecraft reuse. Tune in below around 3:20am EDT (07:20 UTC) to catch the hopeful launch live.
For the first time in more than nine weeks, SpaceX has completed a routine Falcon 9 preflight test known as a static fire and verified that the rocket is ready to launch later this week.
Save for at least one booster qualification test completed at SpaceX’s McGregor, Texas development facilities, Falcon 9’s August 25th static fire is the first since June 22nd. The upgraded Cargo Dragon space station resupply mission the rocket will support will also be SpaceX’s first launch since June 30th – the company’s longest hiatus between launches since a three-month pause that began two years ago.
Now, just a few days before that drought is expected to end, a SpaceX executive has partially explained why the company hasn’t launched a single Falcon rocket in ~60 days after completing a record 20 orbital launches in the first half of 2021.
Speaking at the 2021 Space Symposium on August 24th, SpaceX President and COO Gwynne Shotwell revealed that the company had chosen to pause Starlink missions (representing the vast majority of its 2021 launches) and focus on preparing a new generation of satellites for flight. Believed to be called Starlink V1.5, those new satellites represent a relatively small design change save for one crucial addition: multiple lasers.
All the way back in mid-2018, SpaceX launched its very first pair of Starlink prototype satellites – spacecraft that largely functioned as expected and provided a wealth of data but were almost nothing like the Starlink V0.9 and V1.0 spacecraft SpaceX would eventually start launching in 2019. Nevertheless, they did carry sets of small lasers generally known as optical intersatellite links or OISLs for short. Not radically dissimilar to the hundreds of thousands of miles of fiber optic cables that make up the backbone of the internet, lasers operating in the vacuum of space can effectively mirror the extraordinary bandwidth and performance offered by fiber connections – but wirelessly.
Instead of carefully insulated cables filled with tiny threads of glass, which really just serve as a controlled environment for light-based communications, OISLs enable a similar feat by replacing cables with extraordinarily precise mechanisms capable of aiming lasers with sub-millimeter precision from dozens or hundreds of miles away. As a result, laser interlinks are fairly complex and expensive devices – not something currently economical to install on thousands of satellites mainly focused on affordability.
SpaceX, of course, has wanted to install unprecedentedly affordable laser interlinks on thousands of Starlink satellites for as long as the constellation has been publicly discussed. If realized, it would create an extraordinary orbital mesh network that would allow Starlink to self-route a large portion of user communications without the need for a colossal network of tens of thousands of ground stations covering every inch of Earth – land, sea, ice, and all. A Starlink constellation with near-universal laser interlinks could also potentially allow the constellation to not only match – but beat by a large margin – the latency of best-case terrestrial fiber-optic connections.
After effectively completing Starlink’s first ‘shell’ of satellites earlier this year, SpaceX shifted its focus to preparing for polar Starlink launches from both its west and east coast facilities. While the first shell lacked interlinks entirely, SpaceX appears to have decided that all polar Starlink satellites will be launched with its own custom-built space lasers, even if that means delaying Starlink launches until those lasers are ready for action. Due to the fact that the vast majority of SpaceX’s launches as of late have been its own Starlink missions, the company’s Falcon rockets simply haven’t had anything to launch.


That should change on August 28th, when a thrice-flown Falcon 9 booster launches a refurbished spacecraft on its second orbital space station resupply – a first for SpaceX’s upgraded Cargo Dragon 2 vehicle. A Shortfall of Gravitas (ASOG), SpaceX’s newest drone ship, will also be supporting its first Falcon landing ever as part of CRS-23, hopefully recovering Falcon 9 booster B1064 for a fifth launch later this year.
Tune in around 3:20am (07:20 UTC) on Saturday, August 28th to watch SpaceX’s first launch in two months live.
Elon Musk
GM CEO Mary Barra says she told Biden to give Tesla and Musk EV credit
“He was crediting me, and I said, ‘Actually, I think a lot of that credit goes to Elon and Tesla…You know me, Andrew. I don’t want to take credit for things.”
General Motors CEO Mary Barra said in a new interview on Wednesday that she told President Joe Biden to credit Tesla and its CEO, Elon Musk, for the widespread electric vehicle transition.
She said she told Biden this after the former President credited her and GM for leading EV efforts in the United States.
During an interview at the New York Times Dealbook Summit with Andrew Ross Sorkin, Barra said she told Biden that crediting her was essentially a mistake, and that Musk and Tesla should have been explicitly mentioned (via Business Insider):
“He was crediting me, and I said, ‘Actually, I think a lot of that credit goes to Elon and Tesla…You know me, Andrew. I don’t want to take credit for things.”
GM CEO Mary Barra said to Andrew Sorkin at the New York Times Dealbook Summit that she pulled President Biden aside and said Tesla CEO @elonmusk deserved the credit for EVs:
“He was crediting me, and I said, ‘Actually, I think a lot of that credit goes to Elon and Tesla,'” Barra… pic.twitter.com/OHBTG1QfbJ
— TESLARATI (@Teslarati) December 3, 2025
Back in 2021, President Biden visited GM’s “Factory Zero” plant in Detroit, which was the centerpiece of the company’s massive transition to EVs. The former President went on to discuss the EV industry, and claimed that GM and Barra were the true leaders who caused the change:
“In the auto industry, Detroit is leading the world in electric vehicles. You know how critical it is? Mary, I remember talking to you way back in January about the need for America to lead in electric vehicles. I can remember your dramatic announcement that by 2035, GM would be 100% electric. You changed the whole story, Mary. You did, Mary. You electrified the entire automotive industry. I’m serious. You led, and it matters.”
People were baffled by the President’s decision to highlight GM and Barra, and not Tesla and Musk, who truly started the transition to EVs. GM, Ford, and many other companies only followed in the footsteps of Tesla after it started to take market share from them.
Elon Musk and Tesla try to save legacy automakers from Déjà vu
Musk would eventually go on to talk about Biden’s words later on:
“They have so much power over the White House that they can exclude Tesla from an EV Summit. And, in case the first thing, in case that wasn’t enough, then you have President Biden with Mary Barra at a subsequent event, congratulating Mary for having led the EV revolution.”
In Q4 2021, which was shortly after Biden’s comments, Tesla delivered 300,000 EVs. GM delivered just 26.
News
Tesla Full Self-Driving shows confident navigation in heavy snow
So far, from what we’ve seen, snow has not been a huge issue for the most recent Full Self-Driving release. It seems to be acting confidently and handling even snow-covered roads with relative ease.
Tesla Full Self-Driving is getting its first taste of Winter weather for late 2025, as snow is starting to fall all across the United States.
The suite has been vastly improved after Tesla released v14 to many owners with capable hardware, and driving performance, along with overall behavior, has really been something to admire. This is by far the best version of FSD Tesla has ever released, and although there are a handful of regressions with each subsequent release, they are usually cleared up within a week or two.
Tesla is releasing a modified version of FSD v14 for Hardware 3 owners: here’s when
However, adverse weather conditions are something that Tesla will have to confront, as heavy rain, snow, and other interesting situations are bound to occur. In order for the vehicles to be fully autonomous, they will have to go through these scenarios safely and accurately.
One big issue I’ve had, especially in heavy rain, is that the camera vision might be obstructed, which will display messages that certain features’ performance might be degraded.
So far, from what we’ve seen, snow has not been a huge issue for the most recent Full Self-Driving release. It seems to be acting confidently and handling even snow-covered roads with relative ease:
FSD 14.1.4 snow storm Ontario Canada pic.twitter.com/jwK1dLYT0w
— Everything AI (@mrteslaspace) November 17, 2025
I found the steepest, unplowed hill in my area and tested the following:
• FSD 14.2.1 on summer tires
• FSD 14.2.1 on winter tires
• Manual drivingBut I think the most impressive part was how FSD went DOWN the hill. FSD in the snow is sublime $TSLA pic.twitter.com/YMcN7Br3PU
— Dillon Loomis (@DillonLoomis) December 2, 2025
Well.. I couldn’t let the boys have all the fun!
Threw the GoPro up and decided to FSD v14.2.1 in the snow. Roads were not compacted like the other day, a little slippery, but overall doable at lower speeds. Enjoy the video and holiday music 🎶
Liked:
Took turns super slow… pic.twitter.com/rIAIeh3Zu3— 🦋Diana🦋 (@99_Colorado) December 3, 2025
Moving into the winter months, it will be very interesting to see how FSD handles even more concerning conditions, especially with black ice, freezing rain and snow mix, and other things that happen during colder conditions.
We are excited to test it ourselves, but I am waiting for heavy snowfall to make it to Pennsylvania so I can truly push it to the limit.
News
Tesla hosts Rome Mayor for first Italian FSD Supervised road demo
The event marked the first time an Italian mayor tested the advanced driver-assistance system in person in Rome’s urban streets.
Tesla definitely seems to be actively engaging European officials on FSD’s capabilities, with the company hosting Rome Mayor Roberto Gualtieri and Mobility Assessor Eugenio Patanè for a hands-on road demonstration.
The event marked the first time an Italian mayor tested the advanced driver-assistance system in person in Rome’s urban streets. This comes amid Tesla’s push for FSD’s EU regulatory approvals in the coming year.
Rome officials experience FSD Supervised
Tesla conducted the demo using a Model 3 equipped with Full Self-Driving (Supervised), tackling typical Roman traffic including complex intersections, roundabouts, pedestrian crossings and mixed users like cars, bikes and scooters.
The system showcased AI-based assisted driving, prioritizing safety while maintaining flow. FSD also handled overtakes and lane decisions, though with constant driver supervision.
Investor Andrea Stroppa detailed the event on X, noting the system’s potential to reduce severe collision risks by up to seven times compared to traditional driving, based on Tesla’s data from billions of global fleet miles. The session highlighted FSD’s role as an assistance tool in its Supervised form, not a replacement, with the driver fully responsible at all times.
Path to European rollout
Tesla has logged over 1 million kilometers of testing across 17 European countries, including Italy, to refine FSD for local conditions. The fact that Rome officials personally tested FSD Supervised bodes well for the program’s approval, as it suggests that key individuals are closely watching Tesla’s efforts and innovations.
Assessor Patanè also highlighted the administration’s interest in technologies that boost road safety and urban travel quality, viewing them as aids for both private and public transport while respecting rules.
Replies on X urged involving Italy’s Transport Ministry to speed approvals, with one user noting, “Great idea to involve the mayor! It would be necessary to involve components of the Ministry of Transport and the government as soon as possible: it’s they who can accelerate the approval of FSD in Italy.”