Connect with us

News

Elon Musk says a SpaceX Falcon 9 rocket is about to be "destroyed in Dragon fire"

Sadly, this is a not a sight that will greet Falcon 9 booster B1046's fourth launch - Crew Dragon's critical In-Flight Abort test. (SpaceX)

Published

on

SpaceX CEO Elon Musk has officially confirmed that the company’s next Falcon 9 launch will destroy the flight-proven booster and upper stage “in Dragon fire”, a cryptic reference to the ultimate purpose of the sacrifice.

Known as SpaceX’s In-Flight Abort (IFA) test, the mission is designed not to place any particular payload in orbit but to demonstrate that Crew Dragon – the company’s first human-rated spacecraft – can ensure astronaut safety even if faced with a worst-case scenario during launch. IFA will mark Crew Dragon’s second dedicated abort test and second launch on a SpaceX Falcon 9 rocket, although the mission’s brand-new spacecraft will have to suffice with a suborbital jaunt before hopefully splashing down intact in the Atlantic Ocean.

If everything goes as planned, SpaceX has every intention of reusing the IFA Crew Dragon capsule on a future mission, although it’s unclear what that mission might look like. It’s unlikely that a reused SpaceX spacecraft will fly NASA astronauts anytime soon but it’s possible that the company will refurbish the vehicle for an entirely private astronaut launch or transform it into the first uncrewed launch of a next-generation Cargo Dragon (Dragon 2). Regardless, given the challenges posed by the In-Flight Abort, Crew Dragon’s survival is far from guaranteed.

Given that such an abort scenario is by definition a possibility, it’s likely the case that SpaceX’s engineers are almost certain that Crew Dragon should be able to survive such an ordeal, but the spacecraft will likely be pushed to its limits and it’s often much harder to ensure that everything works as intended at those limits.

In-Flight Abort by the numbers

Formerly scheduled to fly since-destroyed Crew Dragon capsule C201, SpaceX was forced to shuffle its spacecraft scheduling, reassigning Crew Dragon capsule C205 – originally expected to launch SpaceX’s first NASA astronaut mission – to support the In-Flight Abort. Featuring upgrades designed to prevent the failure mode that led to C201’s violent explosion, C205 will now have to survive a series of extremely challenging environments.

Advertisement
-->

The IFA test is designed to prove that Crew Dragon can escape a failing Falcon 9 rocket during the most mechanically stressful point of launch. Occurring around 80-100 seconds after liftoff and known as Max Q, it’s the point where Falcon 9’s velocity and altitude combine to create the most friction and pressure the rocket’s windward parts will experience on their climb to orbit. For Crew Dragon, this means its SuperDraco abort engines will have to work fight upwards against air that is functionally (but not literally) much thicker than it is at other points during flight – a battle that will simultaneously put even more pressure (mechanical stress) on the spacecraft’s surfaces.

Pictured with Starship and Super Heavy, Max Q can sometimes correlate with spectacular clouds that form and pulse along the nose of a rocket – caused because the pressure quite literally condenses the water vapor in the air. (SpaceX)

Purely from a numerical perspective, the pressure at Max Q is typically around 30-35 kPa (4.5-5 psi), which doesn’t sound like much but can easily become a force to be reckoned with when the surface area of the rocket or spacecraft being impacted is as large as Crew Dragon (let alone Starship). For reference, Crew Dragon capsules likely have a conical surface area on the order of 30,000 square inches (~19 m²), meaning that the spacecraft is subjected to a total mechanical load of 50-60 metric tons (~130,000 lbf) at Max Q.

Traveling as fast as Mach 2.5 (860 m/s) at an altitude of 28 kilometers (17 mi) at the point where Crew Dragon will ignite its abort thrusters and attempt to escape, that very act of escape will likely magnify the mechanical stresses on the capsule even further. During Crew Dragon’s 2015 Pad Abort, for example, the spacecraft went from a standstill to 155 m/s (345 mph) in 7 seconds – an average acceleration of about 2.3 Gs. Crew Dragon C205 could thus find itself traveling almost Mach 3 (more than a kilometer per second) just seconds after separating and may ultimately reach a peak altitude of almost 75 km (45 mi).

This is all to simply say that Crew Dragon is going to be subjected to an array of varying extremes in a very short period of time, during and after which it must still successfully control its orientation, avoid tumbling, detach its trunk section, and deploy a series of parachutes to achieve a fully-successful test. Additionally, the In-Flight Abort test will see Crew Dragon launch on an almost orbit-worthy Falcon 9 upper stage (lacking only a functional Merlin Vacuum engine) and thrice-flown booster B1046.

According to CEO Elon Musk, it simply is not going to be possible to prevent the historic booster – the first Falcon 9 Block 5 rocket ever launched – from being destroyed shortly after Crew Dragon attempts its escape. Once Dragon departs Falcon 9, the upper stage will likely be torn to shreds by the supersonic airstream suddenly buffeting it, ultimately exposing Falcon 9 B1046’s unchanged interstage – effectively a giant, open cylinder closed at its base.

Likely still travel supersonic, the results of the airstream entering Falcon 9’s interstage and finding no exit will likely be akin to a glass cup smashing mouth-first into a brick wall with a bowling ball taped to its bottom. Thankfully, Falcon 9 B1046 has already successfully supported three orbital-class launches since it debuted in May 2018, completing its third flight just seven months later. The booster will be missed and the opportunity cost (at least several more orbital-class launches) is definitely non-zero, but its sacrifice sill be for a good reason.

Advertisement
-->

As Musk notes, if the In-Flight Abort goes as planned, it could pave the way for Crew Dragon’s first NASA astronaut launch – known as Demo-2 – as few as 6-8 weeks later. For now, Crew Dragon’s IFA test is scheduled to launch no earlier than (NET) January 18th, likely around 8 am EST (13:00 UTC).

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Model 3 named New Zealand’s best passenger car of 2025

Tesla flipped the switch on Full Self-Driving (Supervised) in September, turning every Model 3 and Model Y into New Zealand’s most advanced production car overnight.

Published

on

Credit: Tesla Asia/X

The refreshed Tesla Model 3 has won the DRIVEN Car Guide AA Insurance NZ Car of the Year 2025 award in the Passenger Car category, beating all traditional and electric rivals. 

Judges praised the all-electric sedan’s driving dynamics, value-packed EV tech, and the game-changing addition of Full Self-Driving (Supervised) that went live in New Zealand this September.

Why the Model 3 clinched the crown

DRIVEN admitted they were late to the “Highland” party because the updated sedan arrived in New Zealand as a 2024 model, just before the new Model Y stole the headlines. Yet two things forced a re-evaluation this year.

First, experiencing the new Model Y reminded testers how many big upgrades originated in the Model 3, such as the smoother ride, quieter cabin, ventilated seats, rear touchscreen, and stalk-less minimalist interior. Second, and far more importantly, Tesla flipped the switch on Full Self-Driving (Supervised) in September, turning every Model 3 and Model Y into New Zealand’s most advanced production car overnight.

FSD changes everything for Kiwi buyers

The publication called the entry-level rear-wheel-drive version “good to drive and represents a lot of EV technology for the money,” but highlighted that FSD elevates it into another league. “Make no mistake, despite the ‘Supervised’ bit in the name that requires you to remain ready to take control, it’s autonomous and very capable in some surprisingly tricky scenarios,” the review stated.

Advertisement
-->

At NZ$11,400, FSD is far from cheap, but Tesla also offers FSD (Supervised) on a $159 monthly subscription, making the tech accessible without the full upfront investment. That’s a game-changer, as it allows users to access the company’s most advanced system without forking over a huge amount of money.

Continue Reading

News

Tesla starts rolling out FSD V14.2.1 to AI4 vehicles including Cybertruck

FSD V14.2.1 was released just about a week after the initial FSD V14.2 update was rolled out.

Published

on

Credit: Grok Imagine

It appears that the Tesla AI team burned the midnight oil, allowing them to release FSD V14.2.1 on Thanksgiving. The update has been reported by Tesla owners with AI4 vehicles, as well as Cybertruck owners. 

For the Tesla AI team, at least, it appears that work really does not stop.

FSD V14.2.1

Initial posts about FSD V14.2.1 were shared by Tesla owners on social media platform X. As per the Tesla owners, V14.2.1 appears to be a point update that’s designed to polish the features and capacities that have been available in FSD V14. A look at the release notes for FSD V14.2.1, however, shows that an extra line has been added. 

“Camera visibility can lead to increased attention monitoring sensitivity.”

Whether this could lead to more drivers being alerted to pay attention to the roads more remains to be seen. This would likely become evident as soon as the first batch of videos from Tesla owners who received V14.21 start sharing their first drive impressions of the update. Despite the update being released on Thanksgiving, it would not be surprising if first impressions videos of FSD V14.2.1 are shared today, just the same.

Advertisement
-->

Rapid FSD releases

What is rather interesting and impressive is the fact that FSD V14.2.1 was released just about a week after the initial FSD V14.2 update was rolled out. This bodes well for Tesla’s FSD users, especially since CEO Elon Musk has stated in the past that the V14.2 series will be for “widespread use.” 

FSD V14 has so far received numerous positive reviews from Tesla owners, with numerous drivers noting that the system now drives better than most human drivers because it is cautious, confident, and considerate at the same time. The only question now, really, is if the V14.2 series does make it to the company’s wide FSD fleet, which is still populated by numerous HW3 vehicles. 

Continue Reading

News

Waymo rider data hints that Tesla’s Cybercab strategy might be the smartest, after all

These observations all but validate Tesla’s controversial two-seat Cybercab strategy, which has caught a lot of criticism since it was unveiled last year.

Published

on

Credit: wudapig/Reddit

Toyota Connected Europe designer Karim Dia Toubajie has highlighted a particular trend that became evident in Waymo’s Q3 2025 occupancy stats. As it turned out, 90% of the trips taken by the driverless taxis carried two or fewer passengers. 

These observations all but validate Tesla’s controversial two-seat Cybercab strategy, which has caught a lot of criticism since it was unveiled last year.

Toyota designer observes a trend

Karim Dia Toubajie, Lead Product Designer (Sustainable Mobility) at Toyota Connected Europe, analyzed Waymo’s latest California Public Utilities Commission filings and posted the results on LinkedIn this week.

“90% of robotaxi trips have 2 or less passengers, so why are we using 5-seater vehicles?” Toubajie asked. He continued: “90% of trips have 2 or less people, 75% of trips have 1 or less people.” He accompanied his comments with a graphic showing Waymo’s occupancy rates, which showed 71% of trips having one passenger, 15% of trips having two passengers, 6% of trips having three passengers, 5% of trips having zero passengers, and only 3% of trips having four passengers.

The data excludes operational trips like depot runs or charging, though Toubajie pointed out that most of the time, Waymo’s massive self-driving taxis are really just transporting 1 or 2 people, at times even no passengers at all. “This means that most of the time, the vehicle being used significantly outweighs the needs of the trip,” the Toyota designer wrote in his post.

Advertisement
-->

Cybercab suddenly looks perfectly sized

Toubajie gave a nod to Tesla’s approach. “The Tesla Cybercab announced in 2024, is a 2-seater robotaxi with a 50kWh battery but I still believe this is on the larger side of what’s required for most trips,” he wrote.

With Waymo’s own numbers now proving 90% of demand fits two seats or fewer, the wheel-less, lidar-free Cybercab now looks like the smartest play in the room. The Cybercab is designed to be easy to produce, with CEO Elon Musk commenting that its product line would resemble a consumer electronics factory more than an automotive plant. This means that the Cybercab could saturate the roads quickly once it is deployed.

While the Cybercab will likely take the lion’s share of Tesla’s ride-hailing passengers, the Model 3 sedan and Model Y crossover would be perfect for the remaining  9% of riders who require larger vehicles. This should be easy to implement for Tesla, as the Model Y and Model 3 are both mass-market vehicles. 

Continue Reading