Connect with us

News

Elon Musk says a SpaceX Falcon 9 rocket is about to be "destroyed in Dragon fire"

Sadly, this is a not a sight that will greet Falcon 9 booster B1046's fourth launch - Crew Dragon's critical In-Flight Abort test. (SpaceX)

Published

on

SpaceX CEO Elon Musk has officially confirmed that the company’s next Falcon 9 launch will destroy the flight-proven booster and upper stage “in Dragon fire”, a cryptic reference to the ultimate purpose of the sacrifice.

Known as SpaceX’s In-Flight Abort (IFA) test, the mission is designed not to place any particular payload in orbit but to demonstrate that Crew Dragon – the company’s first human-rated spacecraft – can ensure astronaut safety even if faced with a worst-case scenario during launch. IFA will mark Crew Dragon’s second dedicated abort test and second launch on a SpaceX Falcon 9 rocket, although the mission’s brand-new spacecraft will have to suffice with a suborbital jaunt before hopefully splashing down intact in the Atlantic Ocean.

If everything goes as planned, SpaceX has every intention of reusing the IFA Crew Dragon capsule on a future mission, although it’s unclear what that mission might look like. It’s unlikely that a reused SpaceX spacecraft will fly NASA astronauts anytime soon but it’s possible that the company will refurbish the vehicle for an entirely private astronaut launch or transform it into the first uncrewed launch of a next-generation Cargo Dragon (Dragon 2). Regardless, given the challenges posed by the In-Flight Abort, Crew Dragon’s survival is far from guaranteed.

Given that such an abort scenario is by definition a possibility, it’s likely the case that SpaceX’s engineers are almost certain that Crew Dragon should be able to survive such an ordeal, but the spacecraft will likely be pushed to its limits and it’s often much harder to ensure that everything works as intended at those limits.

In-Flight Abort by the numbers

Formerly scheduled to fly since-destroyed Crew Dragon capsule C201, SpaceX was forced to shuffle its spacecraft scheduling, reassigning Crew Dragon capsule C205 – originally expected to launch SpaceX’s first NASA astronaut mission – to support the In-Flight Abort. Featuring upgrades designed to prevent the failure mode that led to C201’s violent explosion, C205 will now have to survive a series of extremely challenging environments.

Advertisement
-->

The IFA test is designed to prove that Crew Dragon can escape a failing Falcon 9 rocket during the most mechanically stressful point of launch. Occurring around 80-100 seconds after liftoff and known as Max Q, it’s the point where Falcon 9’s velocity and altitude combine to create the most friction and pressure the rocket’s windward parts will experience on their climb to orbit. For Crew Dragon, this means its SuperDraco abort engines will have to work fight upwards against air that is functionally (but not literally) much thicker than it is at other points during flight – a battle that will simultaneously put even more pressure (mechanical stress) on the spacecraft’s surfaces.

Pictured with Starship and Super Heavy, Max Q can sometimes correlate with spectacular clouds that form and pulse along the nose of a rocket – caused because the pressure quite literally condenses the water vapor in the air. (SpaceX)

Purely from a numerical perspective, the pressure at Max Q is typically around 30-35 kPa (4.5-5 psi), which doesn’t sound like much but can easily become a force to be reckoned with when the surface area of the rocket or spacecraft being impacted is as large as Crew Dragon (let alone Starship). For reference, Crew Dragon capsules likely have a conical surface area on the order of 30,000 square inches (~19 m²), meaning that the spacecraft is subjected to a total mechanical load of 50-60 metric tons (~130,000 lbf) at Max Q.

Traveling as fast as Mach 2.5 (860 m/s) at an altitude of 28 kilometers (17 mi) at the point where Crew Dragon will ignite its abort thrusters and attempt to escape, that very act of escape will likely magnify the mechanical stresses on the capsule even further. During Crew Dragon’s 2015 Pad Abort, for example, the spacecraft went from a standstill to 155 m/s (345 mph) in 7 seconds – an average acceleration of about 2.3 Gs. Crew Dragon C205 could thus find itself traveling almost Mach 3 (more than a kilometer per second) just seconds after separating and may ultimately reach a peak altitude of almost 75 km (45 mi).

This is all to simply say that Crew Dragon is going to be subjected to an array of varying extremes in a very short period of time, during and after which it must still successfully control its orientation, avoid tumbling, detach its trunk section, and deploy a series of parachutes to achieve a fully-successful test. Additionally, the In-Flight Abort test will see Crew Dragon launch on an almost orbit-worthy Falcon 9 upper stage (lacking only a functional Merlin Vacuum engine) and thrice-flown booster B1046.

According to CEO Elon Musk, it simply is not going to be possible to prevent the historic booster – the first Falcon 9 Block 5 rocket ever launched – from being destroyed shortly after Crew Dragon attempts its escape. Once Dragon departs Falcon 9, the upper stage will likely be torn to shreds by the supersonic airstream suddenly buffeting it, ultimately exposing Falcon 9 B1046’s unchanged interstage – effectively a giant, open cylinder closed at its base.

Likely still travel supersonic, the results of the airstream entering Falcon 9’s interstage and finding no exit will likely be akin to a glass cup smashing mouth-first into a brick wall with a bowling ball taped to its bottom. Thankfully, Falcon 9 B1046 has already successfully supported three orbital-class launches since it debuted in May 2018, completing its third flight just seven months later. The booster will be missed and the opportunity cost (at least several more orbital-class launches) is definitely non-zero, but its sacrifice sill be for a good reason.

Advertisement
-->

As Musk notes, if the In-Flight Abort goes as planned, it could pave the way for Crew Dragon’s first NASA astronaut launch – known as Demo-2 – as few as 6-8 weeks later. For now, Crew Dragon’s IFA test is scheduled to launch no earlier than (NET) January 18th, likely around 8 am EST (13:00 UTC).

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Starlink passes 9 million active customers just weeks after hitting 8 million

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

Published

on

Credit: Starlink/X

SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark. 

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

9 million customers

In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day. 

“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote. 

That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.

Advertisement
-->

Starlink’s momentum

Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.

Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future. 

Continue Reading

News

NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.

Published

on

Credit: Grok Imagine

NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”

Jim Fan’s hands-on FSD v14 impressions

Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14

“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X. 

Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”

Advertisement
-->

The Physical Turing Test

The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning. 

This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.

Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.

Continue Reading

News

Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1

The update was released just a day after FSD v14.2.2 started rolling out to customers. 

Published

on

Credit: Grok

Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers. 

Tesla owner shares insights on FSD v14.2.2.1

Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.

Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.

“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.

Tesla’s FSD v14.2.2 update

Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.

Advertisement
-->

New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.

Continue Reading