Connect with us

SpaceX

SpaceX Falcon Heavy completes successful rehearsal, static fire pushed back due to bug in launch pad hardware

Published

on




More than a decade after its 2005 public conception, SpaceX is closer than ever to the first launch Falcon Heavy, the company’s newest rocket. Earlier this afternoon, the vehicle was aiming for its first static fire test, in which all 27 of its engines would be ignited (nearly) simultaneously in order to test procedures and the rocket itself. This attempt was sadly scrubbed, but only after the vehicle apparently completed a successful wet dress rehearsal, which saw Falcon Heavy fully loaded with propellant. According to Orlando’s News 13, the attempt was scrubbed only after one of eight hold-down clamps showed signs of bugs.

Falcon Heavy vertical at Pad 39A on Thursday, January 11. After a successful rehearsal, the static fire was scrubbed due to a small hardware bug. (Tom Cross/Teslarati)

Falcon Heavy vertical at Pad 39A on Thursday, January 11. After a successful rehearsal, the static fire was scrubbed due to a small hardware bug. (Tom Cross/Teslarati)

While Falcon Heavy is not explicitly critical for SpaceX’s near-term launch business and its loftier future goals, the development and operation of such a massive launch vehicle will likely serve as a strong foundation as the company transitions more aggressively into the design, engineering, and manufacture of its still-larger BFR series of rocket boosters and upper stages. Falcon Heavy stands approximately as tall as Falcon 9 at around 70 m (230 ft), but features three times the thrust and a little less than three times the weight of SpaceX’s workhorse rocket. With 27 Merlin 1D engines to Falcon 9’s namesake nine, Falcon Heavy’s 22,800 kN (5,000,000 lbf) of thrust is a nearly inconceivably amount of power, equivalent to twenty Airbus A380 passenger jets at full throttle.

Why is Falcon Heavy important?

If SpaceX manages to pull off Falcon Heavy as a successful and reliable launch vehicle on the order of its reasonably successful Falcon 9, BFR may well be an easier vehicle to develop and operate, thanks to its single-core design. As Musk himself has discussed over the last year or so, the problem of safely and reliably distributing the thrust of Heavy’s side cores to the center core was unexpectedly difficult, as were the issues of igniting all 27 Merlin 1Ds and safely separating the side cores while in flight. Ultimately, the payload improvement (while in a fully reusable mode of operation) was quite small, particularly for the geostationary missions that make up essentially all prospective Falcon Heavy customer missions.

The additional complexity of recovery and refurbishing three separate Falcon 9 boosters almost simultaneously likely serves to only worsen the vehicle’s potential payoff, although the upcoming Block 5 iteration of Falcon 9 may partially improve the vehicle’s ease of operation. If Block 5 is indeed as reusable as SpaceX intends to make it, then a handful of Block 5 Falcon Heavy vehicles could presumably maintain a decent launch cadence for the vehicle without requiring costly and time-consuming shipping all over the continental US.

A closeup of Falcon Heavy’s three first stages, all featuring grid fins. The white bars in the center help to both distribute stress loads and separate the side cores from the center booster after launch. (SpaceX)

Nevertheless, the (hopefully successful) experience that will follow the launch and recovery operation of a super heavy-lift launch vehicle (SHLV) with ~30 first stage engines will be invaluable for SpaceX’s interplanetary goals. While BFR will be free of the complexity Falcon Heavy’s triple-core first stage added, it is still a massive vehicle that absolutely dwarfs anything SpaceX has attempted before. BFR in its 2017 iteration would mass around three times that of Falcon Heavy and feature 30 Raptor engines capable of approximately 53,000 kN (12,000,000 lbf) of thrust at liftoff, around 2.5x that of Heavy. Many, many other features mean that BFR and particularly BFS will be extraordinarily difficult to realize: BFS alone will be treading into truly unprecedented areas of spaceflight with the scale, longevity, and reusability it is intended to achieve while comfortably ferrying dozens of astronauts to and from Mars and the Moon.

However, the scale of BFR is equivalent to that of the famous Saturn V rocket that took astronauts to the Moon in the 1960s and 70s. In other words, while still dumbfoundingly massive and unprecedented in the modern era, rockets at the scale of BFR do in fact have a precedent of success, which lends the effort considerable plausibility, at least at proof-of-concept level. As of September 2017, Elon Musk suggested that SpaceX was aiming to begin construction of the first BFS (Big ____ Spaceship) by the end of Q2 2018, a truly Muskian deadline that probably wont hold. Still, if construction of the first prototype begins at any point in 2018, it will bode well for SpaceX’s aggressive timelines.

Advertisement

In the meantime, BFR’s precursor Falcon Heavy has effectively completed its first wet dress rehearsal, although the static fire attempt was scrubbed for the day. This is understandable for such a complex and untested vehicle, especially after SpaceX’s exceptionally quick modifications to Pad 39A. While unofficial, word is that an issue with one of the Transport/Erector/Launcher’s (TEL) eight separate launch clamps caused the scrub. Those launch clamps ensure that the massive vehicle would stay put during a static fire, and the status of those clamps would be especially important during such an unusually long static fire of such a powerful rocket.

Stay tuned for updates on SpaceX’s upcoming launches and Falcon Heavy’s next static fire attempt, likely within the next several days. The vehicle’s inaugural launch date is effectively up in the air until the static fire has been successfully completed, but as of yesterday SpaceX was understood to be targeting January 26th. Delays are to be expected.

Follow along live as Teslarati’s launch photographer Tom Cross weathers the delays and covers the static fire attempt live from Cape Canaveral.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk reveals SpaceX’s target for Starship’s 10th launch

Elon Musk has revealed SpaceX’s target timeline for the next Starship launch, which will be the tenth in program history.

Published

on

Credit: SpaceX

Elon Musk has revealed SpaceX’s target timeline for the next Starship launch, which will be the tenth in program history.

Musk says SpaceX is aiming for a timeline of roughly three weeks from now, which would come about ten weeks after the previous launch.

Coincidentally, it would bring the two launches 69 days apart, and if you know anything about Elon Musk, that would be an ideal timeline between two launches.

SpaceX is coming off a test flight in which it lost both the Super Heavy Booster and the Upper Stage in the previous launch. The Super Heavy Booster was lost six minutes and sixteen seconds into the flight, while SpaceX lost communication with the Ship at 46 minutes and 48 seconds.

Musk is aiming for the tenth test flight to take place in early August, he revealed on X:

Advertisement

This will be SpaceX’s fourth test flight of the Starship program in 2025, with each of the previous three flights bringing varying results.

IFT-7 in January brought SpaceX its second successful catch of the Super Heavy Booster in the chopstick arms of the launch tower. The ship was lost after exploding during its ascent over the Turks and Caicos Islands.

IFT-8 was on March 6, and SpaceX caught the booster once again, but the Upper Stage was once again lost.

Advertisement

The most recent flight, IFT-9, took place on May 27 and featured the first reused Super Heavy Booster. However, both the Booster and Upper Stage were lost.

The Federal Aviation Administration (FAA) hit SpaceX with a mishap investigation for Flight 9 on May 30.

Continue Reading

News

SpaceX’s Crew-11 mission targets July 31 launch amid tight ISS schedule

The flight will lift off from Launch Complex 39A at Kennedy Space Center in Florida.

Published

on

spacex-dragon-axiom-ax-4-mission-iss
(Credit: SpaceX)

NASA and SpaceX are targeting July 31 for the launch of Crew-11, the next crewed mission to the International Space Station (ISS). The flight will lift off from Launch Complex 39A at Kennedy Space Center in Florida, using the Crew Dragon Endeavour and a Falcon 9 booster.

Crew Dragon Endeavour returns

Crew-11 will be the sixth flight for Endeavour, making it SpaceX’s most experienced crew vehicle to date. According to SpaceX’s director of Dragon mission management, Sarah Walker, Endeavour has already carried 18 astronauts representing eight countries since its first mission with NASA’s Bob Behnken and Doug Hurley in 2020, as noted in an MSN report.

“This Dragon spacecraft has successfully flown 18 crew members representing eight countries to space already, starting with (NASA astronauts) Bob (Behnken) and Doug (Hurley) in 2020, when it returned human spaceflight capabilities to the United States for the first time since the shuttle retired in July of 2011,” Walker said.

For this mission, Endeavour will debut SpaceX’s upgraded drogue 3.1 parachutes, designed to further enhance reentry safety. The parachutes are part of SpaceX’s ongoing improvements to its human-rated spacecraft, and Crew-11 will serve as their first operational test.

The Falcon 9 booster supporting this launch is core B1094, which has launched in two previous Starlink missions, as well as the private Ax-4 mission on June 25, as noted in a Space.com report.

Advertisement

The four-members of Crew-11 are NASA astronauts Zena Cardman and Mike Fincke, as well as Japan’s Kimiya Yui and Russia’s Oleg Platonov.

Tight launch timing

Crew-11 is slated to arrive at the ISS just as NASA coordinates a sequence of missions, including the departure of Crew-10 and the arrival of SpaceX’s CRS-33 mission. NASA’s Bill Spetch emphasized the need for careful planning amid limited launch resources, noting the importance of maintaining station altitude and resupply cadence.

“Providing multiple methods for us to maintain the station altitude is critically important as we continue to operate and get the most use out of our limited launch resources that we do have. We’re really looking forward to demonstrating that capability with (CRS-33) showing up after we get through the Crew-11 and Crew-10 handover,” Spetch stated.

Continue Reading

News

SpaceX launches Ax-4 mission to the ISS with international crew

The SpaceX Falcon 9 launched Axiom’s Ax-4 mission to ISS. Ax-4 crew will conduct 60+ science experiments during a 14-day stay on the ISS.

Published

on

spacex-ax-4-mission-iss
(Credit: SpaceX)

SpaceX launched the Falcon 9 rocket kickstarting Axiom Space’s Ax-4 mission to the International Space Station (ISS). Axiom’s Ax-4 mission is led by a historic international crew and lifted off from Kennedy Space Center’s Launch Complex 39A at 2:31 a.m. ET on June 25, 2025.

The Ax-4 crew is set to dock with the ISS around 7 a.m. ET on Thursday, June 26, 2025. Axiom Space, a Houston-based commercial space company, coordinated the mission with SpaceX for transportation and NASA for ISS access, with support from the European Space Agency and the astronauts’ governments.

The Ax-4 mission marks a milestone in global space collaboration. The Ax-4 crew, commanded by U.S. astronaut Peggy Whitson, includes Shubhanshu Shukla from India as the pilot, alongside mission specialists Sławosz Uznański-Wiśniewski from Poland and Tibor Kapu from Hungary.

“The trip marks the return to human spaceflight for those countries — their first government-sponsored flights in more than 40 years,” Axiom noted.

Advertisement

Shukla’s participation aligns with India’s Gaganyaan program planned for 2027. He is the first Indian astronaut to visit the ISS since Rakesh Sharma in 1984.

Axiom’s Ax-4 mission marks SpaceX’s 18th human spaceflight. The mission employs a Crew Dragon capsule atop a Falcon 9 rocket, designed with a launch escape system and “two-fault tolerant” for enhanced safety. The Axiom mission faced a few delays due to weather, a Falcon 9 leak, and an ISS Zvezda module leak investigation by NASA and Roscosmos before the recent successful launch.

As the crew prepares to execute its scientific objectives, SpaceX’s Ax-4 mission paves the way for a new era of inclusive space research, inspiring future generations and solidifying collaborative ties in the cosmos. During the Ax-4 crew’s 14-day stay in the ISS, the astronauts will conduct nearly 60 experiments.

“We’ll be conducting research that spans biology, material, and physical sciences as well as technology demonstrations,” said Whitson. “We’ll also be engaging with students around the world, sharing our experience and inspiring the next generation of explorers.”

SpaceX’s Ax-4 mission highlights Axiom’s role in advancing commercial spaceflight and fostering international partnerships. The mission strengthens global space exploration efforts by enabling historic spaceflight returns for India, Poland, and Hungary.

Advertisement
Continue Reading

Trending