

SpaceX
SpaceX Falcon Heavy completes successful rehearsal, static fire pushed back due to bug in launch pad hardware
More than a decade after its 2005 public conception, SpaceX is closer than ever to the first launch Falcon Heavy, the company’s newest rocket. Earlier this afternoon, the vehicle was aiming for its first static fire test, in which all 27 of its engines would be ignited (nearly) simultaneously in order to test procedures and the rocket itself. This attempt was sadly scrubbed, but only after the vehicle apparently completed a successful wet dress rehearsal, which saw Falcon Heavy fully loaded with propellant. According to Orlando’s News 13, the attempt was scrubbed only after one of eight hold-down clamps showed signs of bugs.

Falcon Heavy vertical at Pad 39A on Thursday, January 11. After a successful rehearsal, the static fire was scrubbed due to a small hardware bug. (Tom Cross/Teslarati)

Falcon Heavy vertical at Pad 39A on Thursday, January 11. After a successful rehearsal, the static fire was scrubbed due to a small hardware bug. (Tom Cross/Teslarati)
While Falcon Heavy is not explicitly critical for SpaceX’s near-term launch business and its loftier future goals, the development and operation of such a massive launch vehicle will likely serve as a strong foundation as the company transitions more aggressively into the design, engineering, and manufacture of its still-larger BFR series of rocket boosters and upper stages. Falcon Heavy stands approximately as tall as Falcon 9 at around 70 m (230 ft), but features three times the thrust and a little less than three times the weight of SpaceX’s workhorse rocket. With 27 Merlin 1D engines to Falcon 9’s namesake nine, Falcon Heavy’s 22,800 kN (5,000,000 lbf) of thrust is a nearly inconceivably amount of power, equivalent to twenty Airbus A380 passenger jets at full throttle.
Why is Falcon Heavy important?
If SpaceX manages to pull off Falcon Heavy as a successful and reliable launch vehicle on the order of its reasonably successful Falcon 9, BFR may well be an easier vehicle to develop and operate, thanks to its single-core design. As Musk himself has discussed over the last year or so, the problem of safely and reliably distributing the thrust of Heavy’s side cores to the center core was unexpectedly difficult, as were the issues of igniting all 27 Merlin 1Ds and safely separating the side cores while in flight. Ultimately, the payload improvement (while in a fully reusable mode of operation) was quite small, particularly for the geostationary missions that make up essentially all prospective Falcon Heavy customer missions.
The additional complexity of recovery and refurbishing three separate Falcon 9 boosters almost simultaneously likely serves to only worsen the vehicle’s potential payoff, although the upcoming Block 5 iteration of Falcon 9 may partially improve the vehicle’s ease of operation. If Block 5 is indeed as reusable as SpaceX intends to make it, then a handful of Block 5 Falcon Heavy vehicles could presumably maintain a decent launch cadence for the vehicle without requiring costly and time-consuming shipping all over the continental US.

A closeup of Falcon Heavy’s three first stages, all featuring grid fins. The white bars in the center help to both distribute stress loads and separate the side cores from the center booster after launch. (SpaceX)
Nevertheless, the (hopefully successful) experience that will follow the launch and recovery operation of a super heavy-lift launch vehicle (SHLV) with ~30 first stage engines will be invaluable for SpaceX’s interplanetary goals. While BFR will be free of the complexity Falcon Heavy’s triple-core first stage added, it is still a massive vehicle that absolutely dwarfs anything SpaceX has attempted before. BFR in its 2017 iteration would mass around three times that of Falcon Heavy and feature 30 Raptor engines capable of approximately 53,000 kN (12,000,000 lbf) of thrust at liftoff, around 2.5x that of Heavy. Many, many other features mean that BFR and particularly BFS will be extraordinarily difficult to realize: BFS alone will be treading into truly unprecedented areas of spaceflight with the scale, longevity, and reusability it is intended to achieve while comfortably ferrying dozens of astronauts to and from Mars and the Moon.
However, the scale of BFR is equivalent to that of the famous Saturn V rocket that took astronauts to the Moon in the 1960s and 70s. In other words, while still dumbfoundingly massive and unprecedented in the modern era, rockets at the scale of BFR do in fact have a precedent of success, which lends the effort considerable plausibility, at least at proof-of-concept level. As of September 2017, Elon Musk suggested that SpaceX was aiming to begin construction of the first BFS (Big ____ Spaceship) by the end of Q2 2018, a truly Muskian deadline that probably wont hold. Still, if construction of the first prototype begins at any point in 2018, it will bode well for SpaceX’s aggressive timelines.
- Falcon Heavy’s three boosters and 27 Merlin 1D engines on full display. (SpaceX)
- BFR shown to scale with Falcon 1, 9, and Heavy. (SpaceX)
- .While SpaceX’s own visualizations are gorgeous and thrilling in their own rights, Romax’s interpretation adds an unparalleled level of shock and awe. (SpaceX)
In the meantime, BFR’s precursor Falcon Heavy has effectively completed its first wet dress rehearsal, although the static fire attempt was scrubbed for the day. This is understandable for such a complex and untested vehicle, especially after SpaceX’s exceptionally quick modifications to Pad 39A. While unofficial, word is that an issue with one of the Transport/Erector/Launcher’s (TEL) eight separate launch clamps caused the scrub. Those launch clamps ensure that the massive vehicle would stay put during a static fire, and the status of those clamps would be especially important during such an unusually long static fire of such a powerful rocket.
Stay tuned for updates on SpaceX’s upcoming launches and Falcon Heavy’s next static fire attempt, likely within the next several days. The vehicle’s inaugural launch date is effectively up in the air until the static fire has been successfully completed, but as of yesterday SpaceX was understood to be targeting January 26th. Delays are to be expected.
Follow along live as Teslarati’s launch photographer Tom Cross weathers the delays and covers the static fire attempt live from Cape Canaveral.
News
Starlink makes a difference in Philippine province ravaged by typhoon
The Severe Tropical Storm battered the province, leaving communications networks in the area in shambles.

The Philippines’ Department of Information and Communications Technology (DICT) is using Starlink to provide connectivity in the municipality of Masbate, which was affected by Severe Tropical Storm Opong (international name Bualoi).
The Severe Tropical Storm battered the province, leaving communications networks in the area in shambles.
Starlink units enhance connectivity
DICT Secretary Henry Aguda visited the province to assess internet and communications infrastructure and deliver 10 additional Starlink satellite units, according to the Philippine News Agency. The is move aimed at strengthening emergency response and restore digital access to the area.
Aguda met with Masbate Governor Richard Kho during his visit and joined telecommunications representatives in inspecting provincial offices, free charging stations, and Wi-Fi connectivity sites for residents.
According to DICT officer-in-charge Rachel Ann Grabador, three Starlink units, 10 routers, and a 2kW solar-powered station have already been deployed in the province following the typhoon. The units have been installed at key facilities such as Masbate Airport’s communications tower and the Masbate Provincial Hospital’s administrative office.
Game-changing technology
Thanks to its global coverage and its capability to provide high-speed internet connectivity even in remote areas, Starlink has become the best communications solution that can be deployed in the aftermath of natural disasters. Its low-cost kits, which are capable of of providing fast internet speeds, are also portable, making them easy to deploy in areas that are damaged by natural disasters.
As noted in a Space.com report, there are currently 8,475 Starlink satellites in orbit, of which 8,460 are working, as of September 25, 2025. Initially, SpaceX had filed documents with International regulators to place about 4,000 Starlink satellites in Low Earth Orbit. Over time, however, the number of planned Starlink satellites has grown, with SpaceX aiming to launch as many as 42,000 Starlink satellites to fully connect the globe.
Elon Musk
SpaceX shares targets and tentative launch date for Starship Flight 11
As with all SpaceX tests, the estimated timeline for Starship Flight 11 remains subject to change based on conditions and readiness.

SpaceX is targeting Monday, October 13, for the eleventh test flight of its Starship launch system. The launch window is expected to open at 6:15 p.m. CT.
Similar to past Starship missions, a live webcast will begin about 30 minutes before launch on SpaceX’s website, X account, and X TV app. As with all SpaceX tests, the estimated timeline for Starship Flight 11 remains subject to change based on conditions and readiness.
Super Heavy booster landing test
The upcoming mission will build on the data gathered from Starship’s tenth test flight, focusing on booster performance and upper-stage capabilities. The Super Heavy booster, previously flown on Flight 8, will launch with 24 flight-proven Raptor engines, according to SpaceX in a blog post on its official website. Its primary objective is to validate a new landing burn engine configuration designed for the next generation of Super Heavy.
Instead of returning to Starbase, the Super Heavy booster will follow a trajectory toward the Gulf of America. During descent, it will ignite 13 engines before transitioning to a five-engine divert phase and then completing the landing burn with three central engines, entering a full hover while still above the ocean surface, followed by shutdown and dropping into the Gulf of America.
Starship upper-stage experiments
The Starship upper stage for Flight 11 will carry out a series of in-space demonstrations, including the deployment of eight Starlink simulators that are comparable in size to next-generation Starlink satellites. These payloads will reenter and burn up during descent. A planned Raptor engine relight in orbit will also provide valuable test data.
To evaluate the upper stage’s resilience during reentry, SpaceX engineers have intentionally removed heat shield tiles from select areas to stress-test Starship’s thermal protection system. The vehicle will attempt new maneuvers during descent, including a banking profile and subsonic guidance algorithms intended to simulate future return-to-launch-site missions. The upper stage will ultimately target a splashdown in the Indian Ocean.
SpaceX has already posted a link to the livestream for Starship Flight 11:
News
Astra CEO shades SpaceX over employee workload and Starbase
Elon Musk once stated that no one ever changed the world working just 40 hours a week.

Elon Musk once stated that no one ever changed the world working just 40 hours a week. This was something that is openly known among his companies. They have the potential to change the world, but they require a lot of hours.
SpaceX’s working environment was recently criticized by Chris Kemp, the chief executive officer of Astra. During some remarks at the Berkeley Space Symposium 2025 earlier this month, Kemp shared some sharp remarks about the Elon Musk-led private space enterprise.
SpaceX working conditions and Starbase
As noted in a report from Ars Technica, Kemp discussed a variety of topics during his talk. These included Astra’s successes and failures, as well as his thoughts on other players in the spaceflight industry. To be fair to Kemp, he practically shaded every major rival, calling Firefly’s engine “garbage,” dubbing Blue Origin as slow, and stating that Rocket Lab’s Electron rocket is “too small.”
SpaceX also received some colorful words from the Astra CEO. According to Kemp, SpaceX is leading the way in the spaceflight industry and Elon Musk is admirable in the way that he is willing to fail in order to move quickly. He did, however, highlight that Astra offers a significantly better working environment than SpaceX.
“It’s more fun than SpaceX, because we’re not on the border of Mexico where they’ll chop your head off if you accidentally take a left turn. And you don’t have to live in a trailer. And we don’t make you work six and a half days a week, 12 hours a day. It’s appreciated if you do, but not required,” Kemp said.
Elon Musk’s demands
It is known that Elon Musk demands quite a lot from his employees. However, it is also known that Musk-led companies move very fast and, in more ways than one, they have accomplished world-changing feats. Tesla, for example, has practically ushered in the era of the modern electric vehicle, and SpaceX has made space attainable through its reusable rockets. With this in mind, employees at Musk’s companies, and this of course includes SpaceX, are likely proud of their long work hours.
No one could probably go to Mars in this lifetime with a team that really works just 40 hours a week, after all.
-
Elon Musk2 weeks ago
Tesla FSD V14 set for early wide release next week: Elon Musk
-
News1 week ago
Elon Musk gives update on Tesla Optimus progress
-
News2 weeks ago
Tesla has a new first with its Supercharger network
-
News2 weeks ago
Tesla job postings seem to show next surprise market entry
-
Investor's Corner2 weeks ago
Tesla gets new Street-high price target with high hopes for autonomy domination
-
Lifestyle1 week ago
500-mile test proves why Tesla Model Y still humiliates rivals in Europe
-
News1 week ago
Tesla Giga Berlin’s water consumption has achieved the unthinkable
-
Lifestyle1 week ago
Tesla Model S Plaid battles China’s 1500 hp monster Nurburgring monster, with surprising results