News
SpaceX releases video of world’s most powerful rocket ready for liftoff
Just a few days after its first-ever rollout to Launch Complex 39A, SpaceX has published its official photos of the historic moment, capturing Falcon Heavy poised and ready at the launch pad that could host its inaugural flight as soon as January 15th.
These photos offer the first glimpses of the complete, integrated Falcon Heavy, now with Elon Musk’s Tesla Roadster payload and second stage attached to the massive rocket. While SpaceX has not yet revealed specific details regarding the Roadster’s actual destination, it can be assumed that Falcon Heavy and its second stage will attempt to place it into an extremely stabled orbit around the sun, with one side close to the orbit of Mars. In this configuration, it’s unlikely that there will be any possibility of in-space photo opportunities with the Tesla and Mars. Musk has confirmed that its orbit will be extremely stable, and Roadster will likely remain in its final space journey for hundreds of millions or even billions of years.
With more than 5 million pounds of thrust at liftoff—equal to approximately eighteen 747 aircraft at full power—Falcon Heavy will be the most powerful operational rocket in the world by a factor of two. https://t.co/NneqPRPr46 pic.twitter.com/oswCUreG6i
— SpaceX (@SpaceX) January 3, 2018
While Falcon Heavy’s inaugural launch will apparently see the vehicle operating at only 92% thrust, this performance would still easily catapult the rocket above all other operational launches vehicles by nearly a factor of two.
At a total of 5 million pounds of thrust (22.8 kN), the rocket would be able to lift a fully-fueled 747 passenger jet into low Earth orbit (LEO) in an expendable configuration. Its performance with full recovery of its three first stages is not public, on the other hand, but SpaceX will nevertheless be attempting to recover all first stages alongside the inaugural launch. Approximately 30 seconds before Falcon 9’s usual main engine cut-off (MECO) point, Falcon Heavy’s twin side boosters will separate from the center core (essentially a complete Falcon 9) with the help of some form of mechanical actuators designed to gently push those boosters away from the center.
Quite frankly, the intense aerodynamic forces present at the point of side booster separation mean that it is entirely possible that they may not survive, and could even be drawn back in to impact the center core, an eventuality that would likely bring the mission to a premature end. Typically, rockets with a similar triple booster first stage (Titan IV, Delta IV Heavy) have used relatively powerful separation rockets to more sternly force the side boosters away from the main stage, generally with great success. However, the sort of single-use separation motors would run counter to SpaceX’s primary pursuit of completely reusable rockets.
Risks aside, if all goes well, the side cores will separate and return to the land-based Landing Zone-1 (LZ-1) at Cape Canaveral Air Force Station, and will likely land simultaneously and offer nearby Floridans a double dose of sonic booms as they slow down from speeds well above Mach 3. Meanwhile, the center stage will throttle up and continue on as if it were a Falcon 9. The core stage will finally separate from the second stage and Roadster payload and power back down to Earth to attempt a recovery aboard the drone ship Of Course I Still Love You. Given SpaceX’s previous history of rather exceptional live coverage of both their Falcon 9 launches and landings, fans can expect a truly stunning tour-de-force of a show if the launch goes as planned.
Even then, a failure would still be quite a spectacle and is undeniably a real possibility for any new form or iteration of a rocket. However, it is rather implausible that SpaceX would choose to take unreasonable risks with one of its invaluable launch pads, particularly LC-39A – tasked with supporting SpaceX’s upcoming Commercial Crew demonstration missions no earlier than August 2018. Musk’s hyperbole aside, he can be taken at his word when he in the past commented that the launch would be a spectacle one way or another. The massive vehicle’s first static fire attempt, the final step ahead of launch, is to occur no earlier than January 6th, 2018.
Follow along on Instagram as Teslarati’s launch photographer and correspondent Tom Cross provides behind-the-scenes live coverage of both the launch of Zuma (NET January 5) and the final operations ahead of Falcon Heavy’s first launch.
Elon Musk
Tesla AI5 chip nears completion, Elon Musk teases 9-month development cadence
The Tesla CEO shared his recent insights in a post on social media platform X.
Tesla’s next-generation AI5 chip is nearly complete, and work on its successor is already underway, as per a recent update from Elon Musk.
The Tesla CEO shared his recent insights in a post on social media platform X.
Musk details AI chip roadmap
In his post, Elon Musk stated that Tesla’s AI5 chip design is “almost done,” while AI6 has already entered early development. Musk added that Tesla plans to continue iterating rapidly, with AI7, AI8, AI9, and future generations targeting a nine-month design cycle.
He also noted that Tesla’s in-house chips could become the highest-volume AI processors in the world. Musk framed his update as a recruiting message, encouraging engineers to join Tesla’s AI and chip development teams.
Tesla community member Herbert Ong highlighted the strategic importance of the timeline, noting that faster chip cycles enable quicker learning, faster iteration, and a compounding advantage in AI and autonomy that becomes increasingly difficult for competitors to close.
AI5 manufacturing takes shape
Musk’s comments align with earlier reporting on AI5’s production plans. In December, it was reported that Samsung is preparing to manufacture Tesla’s AI5 chip, accelerating hiring for experienced engineers to support U.S. production and address complex foundry challenges.
Samsung is one of two suppliers selected for AI5, alongside TSMC. The companies are expected to produce different versions of the AI5 chip, with TSMC reportedly using a 3nm process and Samsung using a 2nm process.
Musk has previously stated that while different foundries translate chip designs into physical silicon in different ways, the goal is for both versions of the Tesla AI5 chip to operate identically. AI5 will succeed Tesla’s current AI4 hardware, formerly known as Hardware 4, and is expected to support the company’s Full Self-Driving system as well as other AI-driven efforts, including Optimus.
News
Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.
The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.
The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring.

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.
The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.
ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.
“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.
“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.
News
Tesla Sweden uses Megapack battery to bypass unions’ Supercharger blockade
Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery.
Tesla Sweden has successfully launched a new Supercharger station despite an ongoing blockade by Swedish unions, using on-site Megapack batteries instead of traditional grid connections. The workaround has allowed the Supercharger to operate without direct access to Sweden’s electricity network, which has been effectively frozen by labor action.
Tesla has experienced notable challenges connecting its new charging stations to Sweden’s power grid due to industrial action led by Seko, a major Swedish trade union, which has blocked all new electrical connections for new Superchargers. On paper, this made the opening of new Supercharger sites almost impossible.
Despite the blockade, Tesla has continued to bring stations online. In Malmö and Södertälje, new Supercharger locations opened after grid operators E.ON and Telge Nät activated the sites. The operators later stated that the connections had been made in error.
More recently, however, Tesla adopted a different strategy altogether. Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery, as noted in a Dagens Arbete (DA) report.
Because the Supercharger station does not rely on a permanent grid connection, Tesla was able to bypass the blocked application process, as noted by Swedish car journalist and YouTuber Peter Esse. He noted that the Arlandastad Supercharger is likely dependent on nearby companies to recharge the batteries, likely through private arrangements.
Eight new charging stalls have been launched in the Arlandastad site so far, which is a fraction of the originally planned 40 chargers for the location. Still, the fact that Tesla Sweden was able to work around the unions’ efforts once more is impressive, especially since Superchargers are used even by non-Tesla EVs.
Esse noted that Tesla’s Megapack workaround is not as easily replicated in other locations. Arlandastad is unique because neighboring operators already have access to grid power, making it possible for Tesla to source electricity indirectly. Still, Esse noted that the unions’ blockades have not affected sales as much.
“Many want Tesla to lose sales due to the union blockades. But you have to remember that sales are falling from 2024, when Tesla sold a record number of cars in Sweden. That year, the unions also had blockades against Tesla. So for Tesla as a charging operator, it is devastating. But for Tesla as a car company, it does not matter in terms of sales volumes. People charge their cars where there is an opportunity, usually at home,” Esse noted.