Connect with us

News

SpaceX releases video of world’s most powerful rocket ready for liftoff

Published

on

Just a few days after its first-ever rollout to Launch Complex 39A, SpaceX has published its official photos of the historic moment, capturing Falcon Heavy poised and ready at the launch pad that could host its inaugural flight as soon as January 15th.

These photos offer the first glimpses of the complete, integrated Falcon Heavy, now with Elon Musk’s Tesla Roadster payload and second stage attached to the massive rocket. While SpaceX has not yet revealed specific details regarding the Roadster’s actual destination, it can be assumed that Falcon Heavy and its second stage will attempt to place it into an extremely stabled orbit around the sun, with one side close to the orbit of Mars. In this configuration, it’s unlikely that there will be any possibility of in-space photo opportunities with the Tesla and Mars. Musk has confirmed that its orbit will be extremely stable, and Roadster will likely remain in its final space journey for hundreds of millions or even billions of years.

While Falcon Heavy’s inaugural launch will apparently see the vehicle operating at only 92% thrust, this performance would still easily catapult the rocket above all other operational launches vehicles by nearly a factor of two.

Advertisement
-->

At a total of 5 million pounds of thrust (22.8 kN), the rocket would be able to lift a fully-fueled 747 passenger jet into low Earth orbit (LEO) in an expendable configuration. Its performance with full recovery of its three first stages is not public, on the other hand, but SpaceX will nevertheless be attempting to recover all first stages alongside the inaugural launch. Approximately 30 seconds before Falcon 9’s usual main engine cut-off (MECO) point, Falcon Heavy’s twin side boosters will separate from the center core (essentially a complete Falcon 9) with the help of some form of mechanical actuators designed to gently push those boosters away from the center.

Quite frankly, the intense aerodynamic forces present at the point of side booster separation mean that it is entirely possible that they may not survive, and could even be drawn back in to impact the center core, an eventuality that would likely bring the mission to a premature end. Typically, rockets with a similar triple booster first stage (Titan IV, Delta IV Heavy) have used relatively powerful separation rockets to more sternly force the side boosters away from the main stage, generally with great success. However, the sort of single-use separation motors would run counter to SpaceX’s primary pursuit of completely reusable rockets.

Risks aside, if all goes well, the side cores will separate and return to the land-based Landing Zone-1 (LZ-1) at Cape Canaveral Air Force Station, and will likely land simultaneously and offer nearby Floridans a double dose of sonic booms as they slow down from speeds well above Mach 3. Meanwhile, the center stage will throttle up and continue on as if it were a Falcon 9. The core stage will finally separate from the second stage and Roadster payload and power back down to Earth to attempt a recovery aboard the drone ship Of Course I Still Love You. Given SpaceX’s previous history of rather exceptional live coverage of both their Falcon 9 launches and landings, fans can expect a truly stunning tour-de-force of a show if the launch goes as planned.

Even then, a failure would still be quite a spectacle and is undeniably a real possibility for any new form or iteration of a rocket. However, it is rather implausible that SpaceX would choose to take unreasonable risks with one of its invaluable launch pads, particularly LC-39A – tasked with supporting SpaceX’s upcoming Commercial Crew demonstration missions no earlier than August 2018. Musk’s hyperbole aside, he can be taken at his word when he in the past commented that the launch would be a spectacle one way or another. The massive vehicle’s first static fire attempt, the final step ahead of launch, is to occur no earlier than January 6th, 2018.

Follow along on Instagram as Teslarati’s launch photographer and correspondent Tom Cross provides behind-the-scenes live coverage of both the launch of Zuma (NET January 5) and the final operations ahead of Falcon Heavy’s first launch.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.

Published

on

Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage. 

These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.

FSD mileage milestones

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities. 

City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos. 

Tesla’s data edge

Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own. 

Advertisement
-->

So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.” 

“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X. 

Continue Reading

News

Tesla starts showing how FSD will change lives in Europe

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Published

on

Credit: Grok Imagine

Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options. 

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Officials see real impact on rural residents

Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”

The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.

What the Ministry for Economic Affairs and Transport says

Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents. 

Advertisement
-->

“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe. 

“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post

Continue Reading

News

Tesla China quietly posts Robotaxi-related job listing

Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Published

on

Credit: Tesla

Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China. 

As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Robotaxi-specific role

The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi. 

Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.

China Robotaxi launch

China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.

Advertisement
-->

This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees. 

Continue Reading