News
SpaceX’s first operational NASA astronaut mission (almost) ready for launch
SpaceX and NASA have completed the last major review standing between Crew Dragon and Falcon 9 and the duo’s operational astronaut launch debut, meaning that a routine static fire test is all that really remains.
On Thursday, November 5, the SpaceX Crew Dragon capsule – named “Resilience” – of the first operational SpaceX mission to and from the International Space Station (ISS) as a part of NASA’s Commercial Crew Program (CCP) arrived at the Launch Complex 39A hangar at the Kennedy Space Center.
SpaceX is one of two commercial partners that NASA works with to develop a reliable system of crew transportation to and from the International Space Station. Since the retirement of NASA’s space shuttle program, the United States has been reliant on Russia and its Soyuz program to fulfill the task of maintaining an American presence aboard the ISS. With SpaceX’s first operational CCP mission – dubbed Crew-1 – a new era of commercialized crewed spaceflight will be ushered in.

On November 10th, SpaceX and NASA officials convened for a press conference following the successful completion of the Crew-1 flight readiness review (FRR) – the last major review standing between the assembled hardware and liftoff. SpaceX senior director of Human Spaceflight Programs Benji Reed listed off an array of historic milestones crossed as part of the FRR, noting that the review’s completion means that NASA has officially certified SpaceX for operational astronaut launches, making it the first and only private company in the world capable of safely launching humans.
Additionally, Reed revealed that Crew-1 and Cargo Dragon 2’s imminent December 2nd launch debut will together ring in a potentially unprecedented era in commercial spaceflight. Crew-1 – barring surprises in orbit – will further mark the longest continuous American spaceflight ever, beating a record set by a Skylab mission in the early 1970s if Crew Dragon remains in orbit for the full planned 180-210 days.
“Over the next 15 months, we will fly seven Crew and Cargo Dragon missions for NASA. That means that starting with Crew-1, there will be a continuous presence of SpaceX Dragons on orbit. Starting with the cargo mission CRS-21, every time we launch a Dragon, there will be two Dragons in space – simultaneously – for extended periods of time. Truly, we are returning the United States’ capability for full launch services and we are very, very honored to be a part of that.”
Benji Reed, SpaceX – November 10th, 2020
On a more technical level, Reed noted that SpaceX has decided to replace a component of Falcon 9’s upper stage ‘purge system’ and will bring the whole rocket horizontal later today (November 10th). That swap will delay Falcon 9’s Crew-1 static fire from ~8pm today to ~8pm on Wednesday, November 11th. The Crew-1 mission remains on track to launch no earlier than (NET) 7:49 pm EDT, Saturday, November 14th.
The Crew’s All Here
Three days later, after departing Johnson Space Center via a chartered flight from Ellington Field on Sunday, November 8, the four crew members of the Crew-1 mission arrived in Florida by plane at Kennedy Space Center’s former space shuttle landing facility.
Upon arrival, the crew members – NASA astronauts Victor Glover, Mike Hopkins, Shannon Walker, and Soichi Noguchi of the Japanese Aerospace Exploration Agency – were greeted by NASA Administrator Jim Bridenstine, Agency Deputy Administrator Jim Morhard, Kennedy Space Center Director Bob Cabana, and manager of JAXA’s ISS program, Junichi Sakai.
“Today we are taking another big leap in this transformation in how we do human spaceflight. What we’re talking about here is the commercialization of space. NASA is one customer of many customers in a very robust commercial marketplace in low-Earth orbit,” NASA Administrator Jim Bridenstine said.

Final Milestones Ahead of Flight
After arriving at their launch site in Florida, the four-member crew made the short journey to the LC-39A horizontal integration facility acquainting themselves with their “Resilience” Dragon capsule and the SpaceX Falcon 9 booster that will soon propel them to space. The Dragon capsule had been oriented horizontally and mated with the Falcon 9 first and second stages.
Initially targeting liftoff on October 31, the Crew-1 mission experienced a delay after the SpaceX GPSIII-SV04 B1062 Falcon 9 vehicle suffered an early start anomaly initiating an autonomous pad abort at T-2 seconds.
As the GPS B1062 and Crew-1 B1061 Falcon 9 vehicles were likely built simultaneously, SpaceX and NASA decided to take time to inspect all engines, as well as those of the upcoming NASA, European Space Agency Michael Freilich Sentinel-6 booster, B1063. After replacing a number of engines, both missions are on track to launch before the end of the month.


On Monday, November 9, SpaceX and NASA managers began the tedious process of completing a flight readiness review. The meeting that extends an entire day, or two, involves managers from SpaceX, NASA’s Commercial Crew Program, and the International Space Station program collaborating in discussion to conduct a joint pre-flight examination of all previous specialized reviews – such as ones done specifically for the Dragon capsule or the Falcon 9 booster. The meeting also serves as an opportunity for every department to discuss and close out any remaining concerns. The meeting began at 9 am on Monday, November 9, and concluded on Tuesday, November 10.

The B1061 Falcon 9 booster and Crew Dragon “Resilience” capsule were transported the short distance from the hangar to the launchpad ahead of the test firing of the nine Merlin 1D engines – a final test to certify all flight-critical hardware ahead of the launch attempt. Clearing the final hurdle before flight, SpaceX officially acknowledged that the Crew-1 mission is targeting liftoff at 7:49pm EST (0049 UTC on Nov. 15) on Saturday, November 14 from LC-39A at the Kennedy Space Center.
Following liftoff, the Dragon capsule “Resilience” will separate from the Falcon 9 first stage and continue to propel its crew on an uphill journey to rendevous with the ISS approximately seven and a half hours later.
Live hosted NASA and SpaceX coverage of the events will begin approximately three and half hours prior to liftoff at 3:30 pm EST and will be available on NASA TV and the SpaceX website.
Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes.
News
Tesla winter weather test: How long does it take to melt 8 inches of snow?
In Pennsylvania, we got between 10 and 12 inches of snow over the weekend as a nasty Winter storm ripped through a large portion of the country, bringing snow to some areas and nasty ice storms to others.
I have had a Model Y Performance for the week courtesy of Tesla, which got the car to me last Monday. Today was my last full day with it before I take it back to my local showroom, and with all the accumulation on it, I decided to run a cool little experiment: How long would it take for Tesla’s Defrost feature to melt 8 inches of snow?
Tesla’s Defrost feature is one of the best and most underrated that the car has in its arsenal. While every car out there has a defrost setting, Tesla’s can be activated through the Smartphone App and is one of the better-performing systems in my opinion.
It has come in handy a lot through the Fall and Winter, helping clear up my windshield more efficiently while also clearing up more of the front glass than other cars I’ve owned.
The test was simple: don’t touch any of the ice or snow with my ice scraper, and let the car do all the work, no matter how long it took. Of course, it would be quicker to just clear the ice off manually, but I really wanted to see how long it would take.
Tesla Model Y heat pump takes on Model S resistive heating in defrosting showdown
Observations
I started this test at around 10:30 a.m. It was still pretty cloudy and cold out, and I knew the latter portion of the test would get some help from the Sun as it was expected to come out around noon, maybe a little bit after.
I cranked it up and set my iPhone up on a tripod, and activated the Time Lapse feature in the Camera settings.
The rest of the test was sitting and waiting.
It didn’t take long to see some difference. In fact, by the 20-minute mark, there was some notable melting of snow and ice along the sides of the windshield near the A Pillar.
However, this test was not one that was “efficient” in any manner; it took about three hours and 40 minutes to get the snow to a point where I would feel comfortable driving out in public. In no way would I do this normally; I simply wanted to see how it would do with a massive accumulation of snow.
It did well, but in the future, I’ll stick to clearing it off manually and using the Defrost setting for clearing up some ice before the gym in the morning.
Check out the video of the test below:
❄️ How long will it take for the Tesla Model Y Performance to defrost and melt ONE FOOT of snow after a blizzard?
Let’s find out: pic.twitter.com/Zmfeveap1x
— TESLARATI (@Teslarati) January 26, 2026
News
Tesla Robotaxi ride-hailing without a Safety Monitor proves to be difficult
Tesla Robotaxi ride-hailing without a Safety Monitor is proving to be a difficult task, according to some riders who made the journey to Austin to attempt to ride in one of its vehicles that has zero supervision.
Last week, Tesla officially removed Safety Monitors from some — not all — of its Robotaxi vehicles in Austin, Texas, answering skeptics who said the vehicles still needed supervision to operate safely and efficiently.
BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor
Tesla aimed to remove Safety Monitors before the end of 2025, and it did, but only to company employees. It made the move last week to open the rides to the public, just a couple of weeks late to its original goal, but the accomplishment was impressive, nonetheless.
However, the small number of Robotaxis that are operating without Safety Monitors has proven difficult to hail for a ride. David Moss, who has gained notoriety recently as the person who has traveled over 10,000 miles in his Tesla on Full Self-Driving v14 without any interventions, made it to Austin last week.
He has tried to get a ride in a Safety Monitor-less Robotaxi for the better part of four days, and after 38 attempts, he still has yet to grab one:
Wow just wow!
It’s 8:30PM, 29° out ice storm hailing & Tesla Robotaxi service has turned back on!
Waymo is offline & vast majority of humans are home in the storm
Ride 38 was still supervised but by far most impressive yet pic.twitter.com/1aUnJkcYm8
— David Moss (@DavidMoss) January 25, 2026
Tesla said last week that it was rolling out a controlled test of the Safety Monitor-less Robotaxis. Ashok Elluswamy, who heads the AI program at Tesla, confirmed that the company was “starting with a few unsupervised vehicles mixed in with the broader Robotaxi fleet with Safety Monitors,” and that “the ratio will increase over time.”
This is a good strategy that prioritizes safety and keeps the company’s controlled rollout at the forefront of the Robotaxi rollout.
However, it will be interesting to see how quickly the company can scale these completely monitor-less rides. It has proven to be extremely difficult to get one, but that is understandable considering only a handful of the cars in the entire Austin fleet are operating with no supervision within the vehicle.
News
Tesla gives its biggest hint that Full Self-Driving in Europe is imminent
Tesla has given its biggest hint that Full Self-Driving in Europe is imminent, as a new feature seems to show that the company is preparing for frequent border crossings.
Tesla owner and influencer BLKMDL3, also known as Zack, recently took his Tesla to the border of California and Mexico at Tijuana, and at the international crossing, Full Self-Driving showed an interesting message: “Upcoming country border — FSD (Supervised) will become unavailable.”
FSD now shows a new message when approaching an international border crossing.
Stayed engaged the whole way as we crossed the border and worked great in Mexico! pic.twitter.com/bDzyLnyq0g
— Zack (@BLKMDL3) January 26, 2026
Due to regulatory approvals, once a Tesla operating on Full Self-Driving enters a new country, it is required to comply with the laws and regulations that are applicable to that territory. Even if legal, it seems Tesla will shut off FSD temporarily, confirming it is in a location where operation is approved.
This is something that will be extremely important in Europe, as crossing borders there is like crossing states in the U.S.; it’s pretty frequent compared to life in America, Canada, and Mexico.
Tesla has been working to get FSD approved in Europe for several years, and it has been getting close to being able to offer it to owners on the continent. However, it is still working through a lot of the red tape that is necessary for European regulators to approve use of the system on their continent.
This feature seems to be one that would be extremely useful in Europe, considering the fact that crossing borders into other countries is much more frequent than here in the U.S., and would cater to an area where approvals would differ.
Tesla has been testing FSD in Spain, France, England, and other European countries, and plans to continue expanding this effort. European owners have been fighting for a very long time to utilize the functionality, but the red tape has been the biggest bottleneck in the process.
Tesla Europe builds momentum with expanding FSD demos and regional launches
Tesla operates Full Self-Driving in the United States, China, Canada, Mexico, Puerto Rico, Australia, New Zealand, and South Korea.