News
SpaceX’s Starlink high-speed internet satellites alive and well in orbit
Comments from SpaceX CEO Elon Musk and other executives have confirmed that the company’s first two prototype Starlink internet satellites are healthy and progressing through a range of tests three months after launch.
Designed to flesh out a broad range of technologies and flight-test SpaceX’s ability to design, manufacture, and operate advanced communications satellites, what little public information available on the satellite constellation indicates that the test program is thus far a success. While it can be argued that SpaceX already has years of experience building and operating satellites in the form of Cargo Dragon and Falcon 9’s upper stage, small high-throughput communications satellites are a dramatic leap outside of the company’s demonstrated comfort zones. As such, the fact that the first true standalone Starlink prototypes have survived several months in orbit and managed to demonstrate at least a few of their complex technologies with some success.

A flight-proven SpaceX Falcon 9 launched two Starlink prototype satellites and the PAZ earth-imaging satellite in February 2018. (SpaceX)
Musk noted in a tweet that the first two Starlink satellites were doing “pretty good” and “closing the link to ground with phased array at high bandwidth, low latency (25 ms).” He also stated that there would likely be another hardware revision before settling on a final design for Starlink, indicating that at least one more batch of improved prototype satellites will likely be launched sometime this year.
Given the sheer number of new technologies built in-house for Starlink, ranging from optical (laser) interlink terminals to electric ion propulsion systems, it should come as little surprise that the satellite internet constellation team intends to continue iterative improvement and testing before transferring focus to mass-production and consumer operations.
Previously mentioned by Musk during Tesla’s Q1 2018 conference call, the CEO does not expect initial Starlink service to be available to consumers (and perhaps even to internal R&D teams at Tesla) for at least “three years”, indicating the beginning of operational connectivity no earlier than 2021 or 2022. This timeline allows SpaceX at least another 6-12 months of experimentation and flight testing before the first true production runs and launches would need to begin, giving the company roughly 12-18 months to build and launch the minimum of ~800 satellites required to begin offering consumers internet access.
- SpaceX’s first two Starlink prototype satellites are pictured here before their inaugural Feb. 2018 launch, showing off a utilitarian design. (SpaceX)
- SpaceX’s Starlink satellite constellation efforts could provide the company with valuable experience that can be applied around Mars. (unofficial logo by Eric Ralph)
A couple weeks after the FCC officially approved SpaceX’s full Starlink constellation in March 2018, SpaceX’s Patricia Cooper and Bryon Hargis met with several FCC commissioners and their staff to discuss “the operation of two experimental SpaceX satellites launched on February 22, 2018, including initial results from those test operations.” While about as vague as can be (PDF), this suggested that initial Starlink test operations were proceeding to some extent, whether that procession was nominal or otherwise. Musk’s comments approximately a month later corroborate that vague confirmation of success and reinforce the observation that SpaceX is continuing to make gradual but steady progress on their internet constellation ambitions.
News
Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.
Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage.
These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.
FSD mileage milestones
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities.
City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos.
Tesla’s data edge
Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own.
So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.”
“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X.
News
Tesla starts showing how FSD will change lives in Europe
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options.
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Officials see real impact on rural residents
Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”
The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.
What the Ministry for Economic Affairs and Transport says
Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents.
“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe.
“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post.
News
Tesla China quietly posts Robotaxi-related job listing
Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China.
As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Robotaxi-specific role
The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi.
Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.
China Robotaxi launch
China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.
This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees.

