Connect with us
Falcon 9 B1046 returned to Port of Los Angeles on December 5 after the rocket's historic third launch and landing. (Pauline Acalin) Falcon 9 B1046 returned to Port of Los Angeles on December 5 after the rocket's historic third launch and landing. (Pauline Acalin)

News

SpaceX Falcon 9 booster sails into port after historic third launch and landing

Falcon 9 B1046 returned to Port of Los Angeles on December 5 after the rocket's historic third launch and landing. (Pauline Acalin)

Published

on

Although a sister rocket did not fare nearly as well during a separate landing attempt 48 hours later, SpaceX Falcon 9 Block 5 booster B1046 nailed its third successful launch and landing on December 3rd and arrived in Port of Los Angeles a bit less than 48 hours later.

Greeting the rocket after its milestone third reuse was a rare Los Angeles rainstorm, lending a lovely reflective sheen to all uncovered surfaces as low clouds and an obscured sun bathed everything in a stark and uniform off-white light.

It is difficult to conceive of a set of conditions that might serve to better emphasize the well-worn patina of soot and charring now fully covering the once-shiny white exterior of B1046’s fuel and oxidizer tanks, a sort of literal badge of honor for the three orbital-class launches the booster has now supported in the last six months. Functionally speaking, cleaning a Falcon 9 booster from top to bottom would be an unbelievably tedious, time-consuming, and largely pointless task, requiring careful spot-cleaning of something like 400 square meters (4300 square feet).

Advertisement
-->
Falcon 9 B1046.3 sits aboard drone ship Just Read The Instructions (JRTI) shortly after arriving in port. (Pauline Acalin)

While SpaceX did repaint recovered Falcon 9 boosters a handful of times around the start of commercial reflights, it always served more of an aesthetic purpose over anything seriously utilitarian. Furthermore, aerospace-grade paint like that used by SpaceX is quite heavy potentially weighing several hundred kilograms per booster and requiring a week at minimum to fully apply a new coat. Some followers like to point out the lost benefits of Falcon 9’s reflective white paint, serving as a mild thermal insulator for Falcon 9’s tanks when filled with supercool propellant. While it certainly exists, the additional heating induced by soot coatings is completely negligible for Falcon 9, which is constantly topped off with chilled propellant prior to launch.

As such, sooty boosters will be around as long as the kerolox-power Falcon family remains in operation. Not too long from now, shiny new Falcon rockets will likely be as rare as the expendable rocket launches they partially represent – the launch vehicles of the future will be rugged workhorses more comparable to the 737s that fill the ranks of airliner fleets than to single-use works of art. Nevertheless, soot is by no means an innate feature of rockets, reusable or otherwise, instead deriving from Falcon 9’s pragmatic choice of kerosene as fuel – soot is simply an inevitable byproduct of kerosene combustion.

 

A long and sooty future

Whenever it begins flying, the sole byproducts of the combustion of BFR/Starlink/Super Heavy’s methane-oxygen (methalox) propellant are water vapor and carbon dioxide, although true methane supplies will inevitably have slight impurities and thus cause the negligible production of some less pleasant byproducts. Raptor, the methalox rocket engine that will power BFR, has been performing hot-fire tests for more than two years, and the sheer differences between the exhaust of Merlin and Raptor are a striking example of the different chemistries at work. As a result of much cleaner combustion, BFR may produce no soot byproducts whatsoever – enjoy it while it lasts!

In the meantime, Falcon 9 will continue to fly and refly for the foreseeable future. B1046’s third successful launch and recovery is a huge step in that direction and the very fact that the most noticeable difference is a new coating of soot at least partially hints at the efficacy of Block 5’s reusability-minded upgrades. Even when twice-flown Block 5 octaweb heat shields are glimpsed, it’s all but impossible to tell the difference between an unflown or twice-flown example, while the new jet-black thermal protection on Block 5 interstages and octawebs only exhibit subtle scarring after reentry heating.

It almost goes without saying that the real killer in multi-use aerospace products – fatigue – is rarely visible to the naked eye, so the external appearance of Falcon boosters is more of a swoon-worthy placebo than anything else. Still, Falcon 9 Block 5 continues to demonstrate that its external appearance is almost equally indicative of truly robust reusability engineering.

Advertisement
-->

 


For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla is improving Giga Berlin’s free “Giga Train” service for employees

With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.

Published

on

Credit: Jürgen Stegemann/LinkedIn

Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.

With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.

New shuttle route

As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.

“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.

Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.

Advertisement
-->

Tesla pushes for majority rail commuting

Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.

The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.

Continue Reading

News

Tesla Model 3 and Model Y dominate China’s real-world efficiency tests

The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.

Published

on

Credit: Grok Imagine

Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions. 

The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.

Tesla secures top efficiency results

Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report. 

These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla

Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker. 

“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.

Advertisement
-->

Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.

Continue Reading

Elon Musk

Elon Musk reveals what will make Optimus’ ridiculous production targets feasible

Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.

Published

on

Credit: Tesla Optimus/X

Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.

Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.

The highest volume product

Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.

Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.

Self-replication is key

During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.

Advertisement
-->

The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems. 

If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.

Continue Reading