Connect with us

News

SpaceX simulates lifting Starship with launch tower ‘arms’

Published

on

SpaceX has taken Starbase’s rocket-catching launch tower ‘arms’ to new heights during the latest series of proof tests.

That process began in earnest on January 4th, when SpaceX lifted, opened, and swung the tower’s building-sized arms for the first time. Four days later, SpaceX performed a variation on the first round of tests, again slowly lifting the assembly up the side of the launch tower and opening and closing the arms. The most notable difference was the addition of several tandem swing tests, which hinted at more applied tests that were soon to come. SpaceX also performed some basic tests with a third Starship fueling arm higher up on the tower, very slowly swinging it towards where Starship would be standing.

On Sunday afternoon, a third major round of testing kicked off. This set of tests was considerably more focused than the prior two, suggesting that it was more of a simulation of the main purpose of the arms.

Instead of lifting a few dozen feet and performing basic actuation and coordination tests, SpaceX simply lifted the arm assembly up along the tower’s exterior and didn’t stop. There were a few temporary pauses but the arms ultimately reached the approximate height they’d need to reach to stack a Starship on top of a Super Heavy booster. In fact, despite being (in)famous for being partially designed to catch boosters and ships out of mid-air, the main purpose of the arms – and likely the only reason they exist at all – is to safely, accurately, and precisely lift, install, and stack Starships and Super Heavy boosters.

SpaceX could obviously use a giant crawler or tower crane to accomplish a similar feat but cranes – especially large and tall ones – are extremely sensitive to wind conditions and effectively become very unsafe to operate in anything more than a brisk breeze. To put it lightly, even the average weather on the South Texas Gulf Coast is anything but conducive to the routine and reliable operation of giant cranes, which is exactly what SpaceX would need to avoid near-future Starship launch and recovery operations being constantly delayed by weather.

Advertisement
Super Heavy B5 demonstrates one of its hardpoints’ uses. (NASASpaceflight – bocachicagal)

On January 9th, SpaceX appeared to test exactly that function. Before the day’s testing began, workers installed a large steel bar believed to be a weight simulator between the arms. Just like a booster would, the simulator sat – one end resting on both arms – on two small steel appendages identical to those present on all recent Super Heavy prototypes. On top of serving as a hardpoint for cranes, the downward-facing end of the L-shaped structures are capped with a small steel tip designed to take the whole weight of a Super Heavy. Those two minuscule steel caps – each no more than a foot wide – are what SpaceX (or at least CEO Elon Musk) wants Super Heavy to ‘land’ on to be “caught” by the launch tower’s arms.

More importantly, those caps – covering heavy-duty bearings – are also what the arms will ‘grab’ and manipulate to carefully position Super Heavy boosters for launch mount installation. To do so, each arm has a pair of parallel screw rods that can move together to shift the booster closer to or further away from the launch tower or move in opposite directions to slightly rotate it.

Once the arms reached the top of the tower, SpaceX performed several swing tests, mirroring the kind of movements they would use to carefully lift Starship, swing it over top of Super Heavy, and mate the two stages. Ultimately, the tower seemed to complete the simulation without any showstopping issues. Up next, it’s possible that SpaceX will add weights to the simulator bar to fully simulate the 100-200 ton masses of Starship and Super Heavy. Eventually, SpaceX may also use Starship S20 and Super Heavy B4 to fully qualify the arms by actually lifting, stacking, and removing both stages.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla takes first step in sunsetting Model S and X with drastic move

Tesla won’t be taking custom orders of the Model S or Model X in Europe any longer.

Published

on

Credit: @supergeek18 | X

Tesla has seemingly taken the first step in sunsetting two of its older vehicles, the Model S and Model X, by ending international orders.

The flagship sedan and SUV from Tesla are the two oldest cars in the company’s lineup. They account for a very small portion of overall sales, and several years ago, CEO Elon Musk admitted that Tesla only continues to build and sell them due to “sentimental reasons.”

Earlier this year, there were calls for Tesla to end the production of the two cars, but Lars Moravy said that the Model S and Model X were due to get some love later in 2025. That happened, but the changes were extremely minor.

Tesla launches new Model S and Model X, and the changes are slim

Some took this as an indication that Tesla has kind of moved on from the Model S and Model X. A handful of people seemed to think Tesla would overhaul the vehicles substantially, but the changes were extremely minor and included only a few real adjustments.

In Europe, customers are unable to even put a new order in on a Model S or Model X.

We noticed earlier today that Tesla pressing the ‘Order’ button on either of the flagship vehicles takes you to local inventory, and not the Design Studio where you’d configure your custom build:

Tesla simply does not make enough Model S or Model X units to justify the expensive logistics process of shipping custom orders overseas. It almost seems as if they’re that they will essentially build a bunch of random configurations, send them overseas every few months, and let them sell before replenishing inventory.

Inversely, it could also mean Tesla is truly gearing up to sunset the vehicle altogether. It seems unlikely that the company will fade them out altogether in the next couple of years, but it could absolutely think about ending international orders because volume is so low.

Continue Reading

Energy

Tesla inks multi-billion-dollar deal with LG Energy Solution to avoid tariff pressure

Tesla has reportedly secured a sizable partnership with LGES for LFP cells, and there’s an extra positive out of it.

Published

on

Credit: Tesla

Tesla has reportedly inked a multi-billion-dollar deal with LG Energy Solution in an effort to avoid tariff pressure and domesticate more of its supply chain.

Reuters is reporting that Tesla and LGES, a South Korean battery supplier of the automaker, signed a $4.3 billion deal for energy storage system batteries. The cells are going to be manufactured by LGES at its U.S. factory located in Michigan, the report indicates. The batteries will be the lithium iron phosphate, or LFP, chemistry.

Tesla delivers 384,000 vehicles in Q2 2025, deploys 9.6 GWh in energy storage

It is a move Tesla is making to avoid buying cells and parts from overseas as the Trump White House continues to use tariffs to prioritize domestic manufacturing.

LGES announced earlier today that it had signed a $4.3 billion contract to supply LFP cells over three years to a company, but it did not identify the customer, nor did the company state whether the batteries would be used in automotive or energy storage applications.

The deal is advantageous for both companies. Tesla is going to alleviate its reliance on battery cells that are built out of the country, so it’s going to be able to take some financial pressure off itself.

For LGES, the company has reported that it has experienced slowed demand for its cells in terms of automotive applications. It planned to offset this demand lag with more projects involving the cells in energy storage projects. This has been helped by the need for these systems at data centers used for AI.

During the Q1 Earnings Call, Tesla CFO Vaibhav Taneja confirmed that the company’s energy division had been impacted by the need to source cells from China-based suppliers. He went on to say that the company would work on “securing additional supply chain from non-China-based suppliers.”

It seems as if Tesla has managed to secure some of this needed domestic supply chain.

Continue Reading

Lifestyle

Tesla brings perhaps the coolest interior feature to cars in latest update

Tesla adds on to the “fun” aspect of its vehicles.

Published

on

Credit: Tesla

Tesla has brought perhaps the coolest interior feature to its cars in a new update that is rolling out to vehicles now.

The feature will require a newer vehicle that has interior ambient lighting, which is present on the new Model S, Model X, Model 3 “Highland,” and Model Y “Juniper.” The Cybertruck also has ambient lighting strips throughout.

Tesla Model Y’s ambient lighting design changes revealed in leaked video

With the Version 2025.26+ Software Update, Tesla is rolling out a new “Sync Accent Lights w/ Music” feature, which is available on the Tesla Toybox:

To enable the feature, you’ll access the Toybox, choose “Light Sync,” and then choose “Sync Accent Lights w/ Music.”

Although it does not improve the performance of the vehicle, it is yet another example of Tesla making one of the coolest cars out there. This is truly a cool add-on that can be used to impress your friends and family.

Continue Reading

Trending