Connect with us

SpaceX

SpaceX to build small version of BFR’s spaceship for use on Falcon 9, says Elon Musk

A view of spaceship (BFS) separating from BFR booster (BFB). (SpaceX)

Published

on

SpaceX CEO Elon Musk has taken to Twitter to announce a new development program: in order to gain experience with the new design and recovery strategy, SpaceX engineers and technicians will apparently build a miniature version of BFR’s winged spaceship able to launch atop Falcon 9 or Falcon Heavy.

According to Musk, the company aims to conduct the first orbital flight of this mini-BFS as early as June 2019, just eight months away.

Described as a “SpaceX tech tree build”, Musk seems to be implying that the strategic purpose of this new development is to act as a stepping stone between Falcon 9 and BFR, two dramatically different launch vehicles relying on a variety of entirely distinct technologies. Based on the fact that Musk believes the mini-BFS could reach orbit as early as June 2019, it seems likely that the miniature spaceship will essentially just be a strengthened Falcon 9 upper stage with fins and a heat shield attached versus a more extreme departure, where the stage would literally be a mini-BFS.

Advertisement

In the latter scenario, SpaceX could use the opportunity to extensively test – albeit on a smaller scale – a number of immature BFR technologies, including all-composite propellant tanks, autogenous pressurization, a sea level-optimized rocket engine on an orbital upper stage, methane and oxygen (methalox) propellant, actuatable tripod fins, new heat shield materials, and more. If SpaceX has been working on this for several months, there is still a chance that those technologies will be tested on this step-change Falcon 9 S2 variant, but it seems improbable that Musk would have been able to stay totally silent on the plans during his September 2018 update to the BFR program.

Falcon 9 upper-stage recovery

Going off of what little information we have, it seems more likely that the “mini-BFR ship” described by Musk is an effort to realize Falcon 9 upper stage recovery and test BFR’s orbital spaceship recovery strategies than it is an extensive development platform for all critical BFR technologies. Prior to today’s tweet, Musk announced early this year (April, to be precise) that SpaceX would attempt to recovery Falcon 9’s upper stage with a “giant…balloon”, or an inflatable decelerator to use the technical terminology.

Given this new development, it’s unclear if those plans are still on – as a small spaceship, Falcon 9’s upper stage would likely be able to reenter Earth’s atmosphere without the need for something like a single-use inflatable decelerator, which would have always been a suboptimal crutch for the recovery of any orbital spacecraft, be it Falcon 9 or BFR. With this new plan, it appears that SpaceX wants to kill at least two birds with one stone, building a platform capable of flight-testing a handful of new technologies critical to BFR’s success while also potentially realizing the dream of a fully-reusable Falcon 9.

Advertisement
A gif of Raptor throttling over the course of a 90+ second static-fire test in McGregor, Texas. (SpaceX)

Given recent reports from Reuters that Musk has demanded that SpaceX’s Starlink team work towards the first launch of an operational batch of satellites by mid-2019, his target date for a mini-BFS Falcon 9 upper stage is likely no coincidence. Given the potential risk of being the first to launch on an unproven variant of Falcon 9, it’s possible (if not probable) that SpaceX will conduct its own launch of the rocket prior to flying paying customers – a perfect way to avoid wasting that launch would be risking a few of SpaceX’s own Starlink satellites in place of a customer’s payload.

Musk seems to be confident that SpaceX has effectively ‘solved’ propulsive rocket landings, stating that the purpose of this new variant will be dedicated to testing an “ultra light heat shield and high Mach control surfaces”. Judging from a number of recent job postings focused on new thermal protection systems (and affixing them to composite structures) and an official request for information (RFI) from NASA Ames about its lightweight TUFROC heat shield material, this is a major focus and one of several critical paths for BFR development.


For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Starlink makes a difference in Philippine province ravaged by typhoon

The Severe Tropical Storm battered the province, leaving communications networks in the area in shambles.

Published

on

Credit: Starlink/X

The Philippines’ Department of Information and Communications Technology (DICT) is using Starlink to provide connectivity in the municipality of Masbate, which was affected by Severe Tropical Storm Opong (international name Bualoi). 

The Severe Tropical Storm battered the province, leaving communications networks in the area in shambles.

Starlink units enhance connectivity

DICT Secretary Henry Aguda visited the province to assess internet and communications infrastructure and deliver 10 additional Starlink satellite units, according to the Philippine News Agency. The is move aimed at strengthening emergency response and restore digital access to the area.

Aguda met with Masbate Governor Richard Kho during his visit and joined telecommunications representatives in inspecting provincial offices, free charging stations, and Wi-Fi connectivity sites for residents. 

According to DICT officer-in-charge Rachel Ann Grabador, three Starlink units, 10 routers, and a 2kW solar-powered station have already been deployed in the province following the typhoon. The units have been installed at key facilities such as Masbate Airport’s communications tower and the Masbate Provincial Hospital’s administrative office. 

Advertisement

Game-changing technology

Thanks to its global coverage and its capability to provide high-speed internet connectivity even in remote areas, Starlink has become the best communications solution that can be deployed in the aftermath of natural disasters. Its low-cost kits, which are capable of of providing fast internet speeds, are also portable, making them easy to deploy in areas that are damaged by natural disasters.

As noted in a Space.com report, there are currently 8,475 Starlink satellites in orbit, of which 8,460 are working, as of September 25, 2025. Initially, SpaceX had filed documents with International regulators to place about 4,000 Starlink satellites in Low Earth Orbit. Over time, however, the number of planned Starlink satellites has grown, with SpaceX aiming to launch as many as 42,000 Starlink satellites to fully connect the globe.

Continue Reading

Elon Musk

SpaceX shares targets and tentative launch date for Starship Flight 11

As with all SpaceX tests, the estimated timeline for Starship Flight 11 remains subject to change based on conditions and readiness.

Published

on

Credit: SpaceX

SpaceX is targeting Monday, October 13, for the eleventh test flight of its Starship launch system. The launch window is expected to open at 6:15 p.m. CT. 

Similar to past Starship missions, a live webcast will begin about 30 minutes before launch on SpaceX’s website, X account, and X TV app. As with all SpaceX tests, the estimated timeline for Starship Flight 11 remains subject to change based on conditions and readiness.

Super Heavy booster landing test

The upcoming mission will build on the data gathered from Starship’s tenth test flight, focusing on booster performance and upper-stage capabilities. The Super Heavy booster, previously flown on Flight 8, will launch with 24 flight-proven Raptor engines, according to SpaceX in a blog post on its official website. Its primary objective is to validate a new landing burn engine configuration designed for the next generation of Super Heavy.

Instead of returning to Starbase, the Super Heavy booster will follow a trajectory toward the Gulf of America. During descent, it will ignite 13 engines before transitioning to a five-engine divert phase and then completing the landing burn with three central engines, entering a full hover while still above the ocean surface, followed by shutdown and dropping into the Gulf of America.

Starship upper-stage experiments

The Starship upper stage for Flight 11 will carry out a series of in-space demonstrations, including the deployment of eight Starlink simulators that are comparable in size to next-generation Starlink satellites. These payloads will reenter and burn up during descent. A planned Raptor engine relight in orbit will also provide valuable test data.

Advertisement

To evaluate the upper stage’s resilience during reentry, SpaceX engineers have intentionally removed heat shield tiles from select areas to stress-test Starship’s thermal protection system. The vehicle will attempt new maneuvers during descent, including a banking profile and subsonic guidance algorithms intended to simulate future return-to-launch-site missions. The upper stage will ultimately target a splashdown in the Indian Ocean.

SpaceX has already posted a link to the livestream for Starship Flight 11: 

Continue Reading

News

Astra CEO shades SpaceX over employee workload and Starbase

Elon Musk once stated that no one ever changed the world working just 40 hours a week.

Published

on

Credit: SpaceX

Elon Musk once stated that no one ever changed the world working just 40 hours a week. This was something that is openly known among his companies. They have the potential to change the world, but they require a lot of hours.

SpaceX’s working environment was recently criticized by Chris Kemp, the chief executive officer of Astra. During some remarks at the Berkeley Space Symposium 2025 earlier this month, Kemp shared some sharp remarks about the Elon Musk-led private space enterprise.

SpaceX working conditions and Starbase

As noted in a report from Ars Technica, Kemp discussed a variety of topics during his talk. These included Astra’s successes and failures, as well as his thoughts on other players in the spaceflight industry. To be fair to Kemp, he practically shaded every major rival, calling Firefly’s engine “garbage,” dubbing Blue Origin as slow, and stating that Rocket Lab’s Electron rocket is “too small.”

SpaceX also received some colorful words from the Astra CEO. According to Kemp, SpaceX is leading the way in the spaceflight industry and Elon Musk is admirable in the way that he is willing to fail in order to move quickly. He did, however, highlight that Astra offers a significantly better working environment than SpaceX.

“It’s more fun than SpaceX, because we’re not on the border of Mexico where they’ll chop your head off if you accidentally take a left turn. And you don’t have to live in a trailer. And we don’t make you work six and a half days a week, 12 hours a day. It’s appreciated if you do, but not required,” Kemp said.

Advertisement

Elon Musk’s demands

It is known that Elon Musk demands quite a lot from his employees. However, it is also known that Musk-led companies move very fast and, in more ways than one, they have accomplished world-changing feats. Tesla, for example, has practically ushered in the era of the modern electric vehicle, and SpaceX has made space attainable through its reusable rockets. With this in mind, employees at Musk’s companies, and this of course includes SpaceX, are likely proud of their long work hours. 

No one could probably go to Mars in this lifetime with a team that really works just 40 hours a week, after all.

Continue Reading

Trending