Connect with us

News

Elon Musk says SpaceX’s orbital Starship debut headed for FAA faceoff in a few weeks

Published

on

CEO Elon Musk says that SpaceX’s first completed Starship rocket could be ready for its orbital launch debut just “a few weeks” from now – far sooner than most expected.

On August 6th, SpaceX very stacked that same vehicle – Starship 20 (S20) and Super Heavy Booster 4 (B4) – to its full height for the first time ever, briefly creating the largest rocket ever assembled. However, the feat was equally a symbolic photo opportunity. SpaceX did install an unprecedented number of Raptor engines on Booster 4 and Ship 20 in a spectacularly short timeframe and both stages are technically meant for flight, but Starship S20 was demated less than an hour later and shipped back to the factory shortly thereafter.

Though they’d had Raptors installed and been stacked to their full ~120m (~390 ft) height, neither booster or ship were truly complete and at least 20% of their engines had yet to be qualified at SpaceX’s McGregor, Texas test campus. Both needed a week or two of additional work – mostly just wiring avionics and installing secondary and tertiary plumbing. Curiously, on August 13th, Starship S20 was once again rolled to SpaceX’s Boca Chica launch site in a partial state of completion, where it now sits beside the orbital launch mount for unknown reasons.

After several days of delays, SpaceX also removed Super Heavy B4 from the orbital launch mount and returned it to the build site on August 11th, where teams are still working to finish its secondary plumbing and avionics. Like Ship 20, all of its Raptors were removed soon after its return, freeing both to complete cryogenic proof testing without risking dozens of potentially flightworthy rocket engines.

Like all previous Starship prototypes, those ‘cryo proof’ tests will involved loading Ship 20 and Booster 4 with supercool liquid nitrogen (LN2), simulating the weight and extreme thermal stress of real liquid oxygen (LOx) and methane (LCH4) propellant without the risk of a catastrophic fire or explosion in the event of anomalies.

Advertisement
-->

For more than a month, SpaceX also gradually outfitted one of two suborbital launch mounts with special hydraulic rams that would have simulated the thrust of Ship 20’s three sea level and three vacuum-optimized Raptor engines – the first Starship prototype with such a configuration. The same was true for Booster 4 and SpaceX had outfitted a new test jig with nine hydraulic rams labeled “B4” – clearly meant to simulate the thrust of nine engines pushing against the Super Heavy’s thrust puck. Additionally, a far larger structural test tool unofficially nicknamed the ‘can crusher’ has been more or less finished after ~6 weeks of work, leading many to assume that Booster 4 would be the first Super Heavy to be subjected to the immense simulated thrust of 29 Raptor engines.

However, earlier this week, SpaceX completely disassembled the six hydraulic rams installed on Mount B and removed all nine rams from the apparent Booster 4 jig. Starship S20 was then rolled back to spot beside the orbital launch mount – not the suborbital mount that had been carefully prepared for its test campaign mere days prior. At the time, the only practical explanation – save for some kind of catastrophic miscommunication – was that SpaceX had cancelled clear plans to cryo proof Ship 20 and Booster 4 with simulated Raptor thrust.

Up to now, every single major design change implemented on Starship’s engine section has resulted in the first prototype – and often one or several test tanks – being subjected to cryo proof testing with a complex series of hydraulic rams used to simulate thrust. That most recently peaked with SpaceX’s lone BN2.1 Super Heavy test tank, which seemingly passed a cryo proof, pressure test, and a jig capable of simulating the thrust of up to eight Raptor engines. However, SpaceX has never tested Super Heavy’s new nine-engine thrust puck and has certainly never subjected a Super Heavy booster skirt to the combined thrust of 20 outer engines and 9 center engines.

The fact that complex custom test stands and jigs had already been assembled and installed for Ship 20 and Booster 4 before they were removed or disassembled without use strongly implies that someone at SpaceX – presumably Elon Musk himself – has either decided that those tests are unnecessary or that skipping them is worth the substantial risk. Indeed, for Musk’s subsequent August 15th claim that Ship 20 and Booster 4 could be stacked and ready for flight just “a few weeks” from now to come true, 14-21 days is simply nowhere close to enough time to cryo proof, thrust sim, and static fire both vehicles; integrate the stages; and perform the first true integrate testing of a Starship stack – possibly up to and including some combination of a full-stack cryo proof, wet dress rehearsal, or static fire.

And, as Musk himself notes, that complex ballet of first-of-their-kind rocket prototypes might not even be the long straw for Starship’s orbital launch debut. Technically, short of some kind of major legal intervention, there is actually no way for Starship to launch in the next “few weeks.” In an absolute best-case scenario, the Federal Aviation Administration (FAA) would release a draft environmental review of SpaceX’s orbital Starship launch site today, accept public comments for the required 30 days, instantly clear Starbase with environmental approval within a few days of the public comment window, and then approve Starship’s South Texas orbital launch license as soon as the necessary environmental permissions are in hand.

Advertisement
-->

In other words, the best-case ETA of regulatory approvals for Starship’s first orbital test flight is arguably late September and going off of FAA precedent, that optimistic scenario is also a fairy tale. In reality, a bare minimum of 2-3 months after the FAA releases its draft environmental impact statement is a more realistic best-case scenario for SpaceX. On the opposite end, it’s possible that the FAA will decide that SpaceX needs to complete an entirely new environmental review for its Starbase launch site, easily delaying Starship’s orbital launch debut by 6-12+ months. That doesn’t even account for the potential looming challenges SpaceX might have to surmount to secure an orbital Starship launch license.

Given the challenges SpaceX had in securing even a watered-down suborbital launch license for its medium-altitude Starship flight tests, it’s not out of the question that the FAA could attach some extremely onerous limitations to that license. Ultimately, only time (and the slightest hint of actual movement or urgency at the FAA) will tell and there is arguably nothing that would better apply pressure in the right places than the largest, most powerful, most ambitious rocket ever built sitting – ready for flight – at a brand new launch pad, waiting solely on regulatory approval.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla FSD (Supervised) v14.2.2 starts rolling out

The update focuses on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing, among other improvements.

Published

on

Credit: Grok Imagine

Tesla has started rolling out Full Self-Driving (Supervised) v14.2.2, bringing further refinements to its most advanced driver-assist system. The new FSD update focuses on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing, among other improvements.

Key FSD v14.2.2 improvements

As noted by Not a Tesla App, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures. New Arrival Options let users select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the user’s ideal spot for precision.

Other additions include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and extreme Speed Profiles for customized driving styles. Reliability gains cover fault recovery, residue alerts on the windshield, and automatic narrow-field camera washing for new 2026 Model Y units.

FSD v14.2.2 also boosts unprotected turns, lane changes, cut-ins, and school bus scenarios, among other things. Tesla also noted that users’ FSD statistics will be saved under Controls > Autopilot, which should help drivers easily view how much they are using FSD in their daily drives.  

Key FSD v14.2.2 release notes

Full Self-Driving (Supervised) v14.2.2 includes:

Advertisement
-->
  • Upgraded the neural network vision encoder, leveraging higher resolution features to further improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
  • Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
  • Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances).
  • Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
  • Added additional Speed Profile to further customize driving style preference.
  • Improved handling for static and dynamic gates.
  • Improved offsetting for road debris (e.g. tires, tree branches, boxes).
  • Improve handling of several scenarios, including unprotected turns, lane changes, vehicle cut-ins, and school buses.
  • Improved FSD’s ability to manage system faults and recover smoothly from degraded operation for enhanced reliability.
  • Added alerting for residue build-up on interior windshield that may impact front camera visibility. If affected, visit Service for cleaning!
  • Added automatic narrow field washing to provide rapid and efficient front camera self-cleaning, and optimize aerodynamics wash at higher vehicle speed.
  • Camera visibility can lead to increased attention monitoring sensitivity. 

Upcoming Improvements:

  • Overall smoothness and sentience.
  • Parking spot selection and parking quality.
Continue Reading

News

Tesla is not sparing any expense in ensuring the Cybercab is safe

Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility.

Published

on

Credit: @JoeTegtmeyer/X

The Tesla Cybercab could very well be the safest taxi on the road when it is released and deployed for public use. This was, at least, hinted at by the intensive safety tests that Tesla seems to be putting the autonomous two-seater through at its Giga Texas crash test facility. 

Intensive crash tests

As per recent images from longtime Giga Texas watcher and drone operator Joe Tegtmeyer, Tesla seems to be very busy crash testing Cybercab units. Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility just before the holidays. 

Tegtmeyer’s aerial photos showed the prototypes clustered outside the factory’s testing building. Some uncovered Cybercabs showed notable damage and one even had its airbags engaged. With Cybercab production expected to start in about 130 days, it appears that Tesla is very busy ensuring that its autonomous two-seater ends up becoming the safest taxi on public roads. 

Prioritizing safety

With no human driver controls, the Cybercab demands exceptional active and passive safety systems to protect occupants in any scenario. Considering Tesla’s reputation, it is then understandable that the company seems to be sparing no expense in ensuring that the Cybercab is as safe as possible.

Tesla’s focus on safety was recently highlighted when the Cybertruck achieved a Top Safety Pick+ rating from the Insurance Institute for Highway Safety (IIHS). This was a notable victory for the Cybertruck as critics have long claimed that the vehicle will be one of, if not the, most unsafe truck on the road due to its appearance. The vehicle’s Top Safety Pick+ rating, if any, simply proved that Tesla never neglects to make its cars as safe as possible, and that definitely includes the Cybercab.

Advertisement
-->
Continue Reading

Elon Musk

Tesla’s Elon Musk gives timeframe for FSD’s release in UAE

Provided that Musk’s timeframe proves accurate, FSD would be able to start saturating the Middle East, starting with the UAE, next year. 

Published

on

Tesla CEO Elon Musk stated on Monday that Full Self-Driving (Supervised) could launch in the United Arab Emirates (UAE) as soon as January 2026. 

Provided that Musk’s timeframe proves accurate, FSD would be able to start saturating the Middle East, starting with the UAE, next year. 

Musk’s estimate

In a post on X, UAE-based political analyst Ahmed Sharif Al Amiri asked Musk when FSD would arrive in the country, quoting an earlier post where the CEO encouraged users to try out FSD for themselves. Musk responded directly to the analyst’s inquiry. 

“Hopefully, next month,” Musk wrote. The exchange attracted a lot of attention, with numerous X users sharing their excitement at the idea of FSD being brought to a new country. FSD (Supervised), after all, would likely allow hands-off highway driving, urban navigation, and parking under driver oversight in traffic-heavy cities such as Dubai and Abu Dhabi.

Musk’s comments about FSD’s arrival in the UAE were posted following his visit to the Middle Eastern country. Over the weekend, images were shared online of Musk meeting with UAE Defense Minister, Deputy Prime Minister, and Dubai Crown Prince HH Sheikh Hamdan bin Mohammed. Musk also posted a supportive message about the country, posting “UAE rocks!” on X.

Advertisement
-->

FSD recognition

FSD has been getting quite a lot of support from foreign media outlets. FSD (Supervised) earned high marks from Germany’s largest car magazine, Auto Bild, during a test in Berlin’s challenging urban environment. The demonstration highlighted the system’s ability to handle dense traffic, construction sites, pedestrian crossings, and narrow streets with smooth, confident decision-making.

Journalist Robin Hornig was particularly struck by FSD’s superior perception and tireless attention, stating: “Tesla FSD Supervised sees more than I do. It doesn’t get distracted and never gets tired. I like to think I’m a good driver, but I can’t match this system’s all-around vision. It’s at its best when both work together: my experience and the Tesla’s constant attention.” Only one intervention was needed when the system misread a route, showcasing its maturity while relying on vision-only sensors and over-the-air learning.

Continue Reading