News
Elon Musk says SpaceX’s orbital Starship debut headed for FAA faceoff in a few weeks
CEO Elon Musk says that SpaceX’s first completed Starship rocket could be ready for its orbital launch debut just “a few weeks” from now – far sooner than most expected.
On August 6th, SpaceX very stacked that same vehicle – Starship 20 (S20) and Super Heavy Booster 4 (B4) – to its full height for the first time ever, briefly creating the largest rocket ever assembled. However, the feat was equally a symbolic photo opportunity. SpaceX did install an unprecedented number of Raptor engines on Booster 4 and Ship 20 in a spectacularly short timeframe and both stages are technically meant for flight, but Starship S20 was demated less than an hour later and shipped back to the factory shortly thereafter.
Though they’d had Raptors installed and been stacked to their full ~120m (~390 ft) height, neither booster or ship were truly complete and at least 20% of their engines had yet to be qualified at SpaceX’s McGregor, Texas test campus. Both needed a week or two of additional work – mostly just wiring avionics and installing secondary and tertiary plumbing. Curiously, on August 13th, Starship S20 was once again rolled to SpaceX’s Boca Chica launch site in a partial state of completion, where it now sits beside the orbital launch mount for unknown reasons.
After several days of delays, SpaceX also removed Super Heavy B4 from the orbital launch mount and returned it to the build site on August 11th, where teams are still working to finish its secondary plumbing and avionics. Like Ship 20, all of its Raptors were removed soon after its return, freeing both to complete cryogenic proof testing without risking dozens of potentially flightworthy rocket engines.
Like all previous Starship prototypes, those ‘cryo proof’ tests will involved loading Ship 20 and Booster 4 with supercool liquid nitrogen (LN2), simulating the weight and extreme thermal stress of real liquid oxygen (LOx) and methane (LCH4) propellant without the risk of a catastrophic fire or explosion in the event of anomalies.
For more than a month, SpaceX also gradually outfitted one of two suborbital launch mounts with special hydraulic rams that would have simulated the thrust of Ship 20’s three sea level and three vacuum-optimized Raptor engines – the first Starship prototype with such a configuration. The same was true for Booster 4 and SpaceX had outfitted a new test jig with nine hydraulic rams labeled “B4” – clearly meant to simulate the thrust of nine engines pushing against the Super Heavy’s thrust puck. Additionally, a far larger structural test tool unofficially nicknamed the ‘can crusher’ has been more or less finished after ~6 weeks of work, leading many to assume that Booster 4 would be the first Super Heavy to be subjected to the immense simulated thrust of 29 Raptor engines.
However, earlier this week, SpaceX completely disassembled the six hydraulic rams installed on Mount B and removed all nine rams from the apparent Booster 4 jig. Starship S20 was then rolled back to spot beside the orbital launch mount – not the suborbital mount that had been carefully prepared for its test campaign mere days prior. At the time, the only practical explanation – save for some kind of catastrophic miscommunication – was that SpaceX had cancelled clear plans to cryo proof Ship 20 and Booster 4 with simulated Raptor thrust.
Up to now, every single major design change implemented on Starship’s engine section has resulted in the first prototype – and often one or several test tanks – being subjected to cryo proof testing with a complex series of hydraulic rams used to simulate thrust. That most recently peaked with SpaceX’s lone BN2.1 Super Heavy test tank, which seemingly passed a cryo proof, pressure test, and a jig capable of simulating the thrust of up to eight Raptor engines. However, SpaceX has never tested Super Heavy’s new nine-engine thrust puck and has certainly never subjected a Super Heavy booster skirt to the combined thrust of 20 outer engines and 9 center engines.
The fact that complex custom test stands and jigs had already been assembled and installed for Ship 20 and Booster 4 before they were removed or disassembled without use strongly implies that someone at SpaceX – presumably Elon Musk himself – has either decided that those tests are unnecessary or that skipping them is worth the substantial risk. Indeed, for Musk’s subsequent August 15th claim that Ship 20 and Booster 4 could be stacked and ready for flight just “a few weeks” from now to come true, 14-21 days is simply nowhere close to enough time to cryo proof, thrust sim, and static fire both vehicles; integrate the stages; and perform the first true integrate testing of a Starship stack – possibly up to and including some combination of a full-stack cryo proof, wet dress rehearsal, or static fire.
And, as Musk himself notes, that complex ballet of first-of-their-kind rocket prototypes might not even be the long straw for Starship’s orbital launch debut. Technically, short of some kind of major legal intervention, there is actually no way for Starship to launch in the next “few weeks.” In an absolute best-case scenario, the Federal Aviation Administration (FAA) would release a draft environmental review of SpaceX’s orbital Starship launch site today, accept public comments for the required 30 days, instantly clear Starbase with environmental approval within a few days of the public comment window, and then approve Starship’s South Texas orbital launch license as soon as the necessary environmental permissions are in hand.
In other words, the best-case ETA of regulatory approvals for Starship’s first orbital test flight is arguably late September and going off of FAA precedent, that optimistic scenario is also a fairy tale. In reality, a bare minimum of 2-3 months after the FAA releases its draft environmental impact statement is a more realistic best-case scenario for SpaceX. On the opposite end, it’s possible that the FAA will decide that SpaceX needs to complete an entirely new environmental review for its Starbase launch site, easily delaying Starship’s orbital launch debut by 6-12+ months. That doesn’t even account for the potential looming challenges SpaceX might have to surmount to secure an orbital Starship launch license.
Given the challenges SpaceX had in securing even a watered-down suborbital launch license for its medium-altitude Starship flight tests, it’s not out of the question that the FAA could attach some extremely onerous limitations to that license. Ultimately, only time (and the slightest hint of actual movement or urgency at the FAA) will tell and there is arguably nothing that would better apply pressure in the right places than the largest, most powerful, most ambitious rocket ever built sitting – ready for flight – at a brand new launch pad, waiting solely on regulatory approval.
Elon Musk
SpaceX issues statement on Starship V3 Booster 18 anomaly
The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas.
SpaceX has issued an initial statement about Starship Booster 18’s anomaly early Friday. The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas.
SpaceX’s initial comment
As per SpaceX in a post on its official account on social media platform X, Booster 18 was undergoing gas system pressure tests when the anomaly happened. Despite the nature of the incident, the company emphasized that no propellant was loaded, no engines were installed, and personnel were kept at a safe distance from the booster, resulting in zero injuries.
“Booster 18 suffered an anomaly during gas system pressure testing that we were conducting in advance of structural proof testing. No propellant was on the vehicle, and engines were not yet installed. The teams need time to investigate before we are confident of the cause. No one was injured as we maintain a safe distance for personnel during this type of testing. The site remains clear and we are working plans to safely reenter the site,” SpaceX wrote in its post on X.
Incident and aftermath
Livestream footage from LabPadre showed Booster 18’s lower half crumpling around the liquid oxygen tank area at approximately 4:04 a.m. CT. Subsequent images posted by on-site observers revealed extensive deformation across the booster’s lower structure. Needless to say, spaceflight observers have noted that Booster 18 would likely be a complete loss due to its anomaly.
Booster 18 had rolled out only a day earlier and was one of the first vehicles in the Starship V3 program. The V3 series incorporates structural reinforcements and reliability upgrades intended to prepare Starship for rapid-reuse testing and eventual tower-catch operations. Elon Musk has been optimistic about Starship V3, previously noting on X that the spacecraft might be able to complete initial missions to Mars.
Investor's Corner
Tesla analyst maintains $500 PT, says FSD drives better than humans now
The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.
Tesla (NASDAQ:TSLA) received fresh support from Piper Sandler this week after analysts toured the Fremont Factory and tested the company’s latest Full Self-Driving software. The firm reaffirmed its $500 price target, stating that FSD V14 delivered a notably smooth robotaxi demonstration and may already perform at levels comparable to, if not better than, average human drivers.
The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.
Analysts highlight autonomy progress
During more than 75 minutes of focused discussions, analysts reportedly focused on FSD v14’s updates. Piper Sandler’s team pointed to meaningful strides in perception, object handling, and overall ride smoothness during the robotaxi demo.
The visit also included discussions on updates to Tesla’s in-house chip initiatives, its Optimus program, and the growth of the company’s battery storage business. Analysts noted that Tesla continues refining cost structures and capital expenditure expectations, which are key elements in future margin recovery, as noted in a Yahoo Finance report.
Analyst Alexander Potter noted that “we think FSD is a truly impressive product that is (probably) already better at driving than the average American.” This conclusion was strengthened by what he described as a “flawless robotaxi ride to the hotel.”
Street targets diverge on TSLA
While Piper Sandler stands by its $500 target, it is not the highest estimate on the Street. Wedbush, for one, has a $600 per share price target for TSLA stock.
Other institutions have also weighed in on TSLA stock as of late. HSBC reiterated a Reduce rating with a $131 target, citing a gap between earnings fundamentals and the company’s market value. By contrast, TD Cowen maintained a Buy rating and a $509 target, pointing to strong autonomous driving demonstrations in Austin and the pace of software-driven improvements.
Stifel analysts also lifted their price target for Tesla to $508 per share over the company’s ongoing robotaxi and FSD programs.
Elon Musk
SpaceX Starship Version 3 booster crumples in early testing
Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.
SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory.
Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.
Booster test failure
SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.
Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.
Tight deadlines
SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.
While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.