News
SpaceX’s first orbital-class Starship and Super Heavy to return to launch pad next week
CEO Elon Musk says that SpaceX could return the first orbital-class Starship prototype and its Super Heavy booster to the launch site after rolling the rockets back to the factory for finishing steps.
In response to a video of Super Heavy Booster 4 (B4) returning to the build site, Musk rather specifically stated that both Booster for and Starship 20 (S20) will return to the orbital launch pad on Monday, August 16th. SpaceX returned Ship 20 to its ‘high bay’ vertical integration facility mere hours after the Starship was stacked atop a Super Heavy booster (B4) for the first time ever on August 6th. For unknown reasons, perhaps due to high winds, Booster 4 spent another five days at the pad before SpaceX finally lifted it off the orbital launch mount and rolled it back to the high bay, where it took Ship 20’s place on August 11th.
Almost immediately after S20’s August 6th return, its six Raptor engines were removed to make way for an engine-less proof test campaign that Musk has now implied could start as early as next Monday. Mirroring S20, SpaceX also begin uninstalling Super Heavy Booster 4’s 29 Raptor engines the same day it returned to the high bay.
Around 12 hours after the process began, SpaceX appeared to have removed 14 (just shy of half) of Super Heavy B4’s Raptor engines – a pace almost as spectacular as their 12-18 hour installation a bit less than two weeks prior. Aside from making engine removal dramatically easier, Musk says that SpaceX moved Ship 20 and Booster 4 back to the build site to expedite some minor final integration work – namely “small plumbing and wiring.”
However, aside from Raptor removal, the most obvious and significant work ongoing since the pair’s return to the high bay is the process of inspecting Starship S20’s heat shield and repairing or replacing broken, chipped, and loose tiles. Not long after Ship 20 arrived back at the build site, workers in boom lifts began a seemingly arduous process of inspecting the Starship’s nose heat shield and marking – with colored tape – hundreds of tiles with cracks, chips, or other less visible issues.
After several days of inspections and hundreds of tiles marked, SpaceX finally began the process of removing off-nominal tiles early on August 12th. According to NASASpaceflight.com, that removal process is not particularly easy and can require the use of power tools to effectively cut tiles off their embedded mounting frames. Given the amount of force required, some level of care is also almost certainly needed to avoid damaging any adjacent tiles, which could quickly cause a minor misstep to exponentially spread. Nevertheless, a small team of SpaceX technicians seemingly managed to remove no less than several dozen (and maybe 100+) broken tiles in a few hours.

Up next, those removed tiles will need to be replaced. Still, it remains to be seen if SpaceX will choose to fully complete Starship S20’s “98% done” heat shield before sending the ship back to the launch site for proof and static fire testing. To a degree, putting Starship through a gauntlet of ground tests with a full heat shield installed would be an excellent test of the resilience of its thermal protection system to major thermal stresses from frosty steel skin and expansion/contraction during fueling, as well as violent vibrations during static fires.
However, Starship S20’s heat shield is already so close to completion that it might be only marginally less valuable to save time by testing the vehicle as soon as possible.

To an extent, Booster 4 is a much simpler case as Super Heavy needs to major thermal protection. However, according to Musk, some or all of Super Heavy’s 29 Raptor engines will need their own miniature thermal protection system – perhaps a flexible blanket-like enclosure not unlike what SpaceX uses to partially protect Falcon booster engines during reentry. It remains to be seen if Booster 4 will return to the launch site without engines for cryogenic proof testing or if SpaceX will install heat shielded Raptors before starting the first flightworthy Super Heavy’s first test campaign.
News
BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor
Tesla has officially launched public Robotaxi rides in Austin, Texas, without a Safety Monitor in the vehicle, marking the first time the company has removed anyone from the vehicle other than the rider.
The Safety Monitor has been present in Tesla Robotaxis in Austin since its launch last June, maintaining safety for passengers and other vehicles, and was placed in the passenger’s seat.
Tesla planned to remove the Safety Monitor at the end of 2025, but it was not quite ready to do so. Now, in January, riders are officially reporting that they are able to hail a ride from a Model Y Robotaxi without anyone in the vehicle:
I am in a robotaxi without safety monitor pic.twitter.com/fzHu385oIb
— TSLA99T (@Tsla99T) January 22, 2026
Tesla started testing this internally late last year and had several employees show that they were riding in the vehicle without anyone else there to intervene in case of an emergency.
Tesla has now expanded that program to the public. It is not active in the entire fleet, but there are a “few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors,” Ashok Elluswamy said:
Robotaxi rides without any safety monitors are now publicly available in Austin.
Starting with a few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors, and the ratio will increase over time. https://t.co/ShMpZjefwB
— Ashok Elluswamy (@aelluswamy) January 22, 2026
Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing
The Robotaxi program also operates in the California Bay Area, where the fleet is much larger, but Safety Monitors are placed in the driver’s seat and utilize Full Self-Driving, so it is essentially the same as an Uber driver using a Tesla with FSD.
In Austin, the removal of Safety Monitors marks a substantial achievement for Tesla moving forward. Now that it has enough confidence to remove Safety Monitors from Robotaxis altogether, there are nearly unlimited options for the company in terms of expansion.
While it is hoping to launch the ride-hailing service in more cities across the U.S. this year, this is a much larger development than expansion, at least for now, as it is the first time it is performing driverless rides in Robotaxi anywhere in the world for the public to enjoy.
Investor's Corner
Tesla Earnings Call: Top 5 questions investors are asking
Tesla has scheduled its Earnings Call for Q4 and Full Year 2025 for next Wednesday, January 28, at 5:30 p.m. EST, and investors are already preparing to get some answers from executives regarding a wide variety of topics.
The company accepts several questions from retail investors through the platform Say, which then allows shareholders to vote on the best questions.
Tesla does not answer anything regarding future product releases, but they are willing to shed light on current timelines, progress of certain projects, and other plans.
There are five questions that range over a variety of topics, including SpaceX, Full Self-Driving, Robotaxi, and Optimus, which are currently in the lead to be asked and potentially answered by Elon Musk and other Tesla executives:
- You once said: Loyalty deserves loyalty. Will long-term Tesla shareholders still be prioritized if SpaceX does an IPO?
- Our Take – With a lot of speculation regarding an incoming SpaceX IPO, Tesla investors, especially long-term ones, should be able to benefit from an early opportunity to purchase shares. This has been discussed endlessly over the past year, and we must be getting close to it.
- When is FSD going to be 100% unsupervised?
- Our Take – Musk said today that this is essentially a solved problem, and it could be available in the U.S. by the end of this year.
- What is the current bottleneck to increase Robotaxi deployment & personal use unsupervised FSD? The safety/performance of the most recent models or people to monitor robots, robotaxis, in-car, or remotely? Or something else?
- Our Take – The bottleneck seems to be based on data, which Musk said Tesla needs 10 billion miles of data to achieve unsupervised FSD. Once that happens, regulatory issues will be what hold things up from moving forward.
- Regarding Optimus, could you share the current number of units deployed in Tesla factories and actively performing production tasks? What specific roles or operations are they handling, and how has their integration impacted factory efficiency or output?
- Our Take – Optimus is going to have a larger role in factories moving forward, and later this year, they will have larger responsibilities.
- Can you please tie purchased FSD to our owner accounts vs. locked to the car? This will help us enjoy it in any Tesla we drive/buy and reward us for hanging in so long, some of us since 2017.
- Our Take – This is a good one and should get us some additional information on the FSD transfer plans and Subscription-only model that Tesla will adopt soon.
Tesla will have its Earnings Call on Wednesday, January 28.
Elon Musk
Elon Musk shares incredible detail about Tesla Cybercab efficiency
Elon Musk shared an incredible detail about Tesla Cybercab’s potential efficiency, as the company has hinted in the past that it could be one of the most affordable vehicles to operate from a per-mile basis.
ARK Invest released a report recently that shed some light on the potential incremental cost per mile of various Robotaxis that will be available on the market in the coming years.
The Cybercab, which is detailed for the year 2030, has an exceptionally low cost of operation, which is something Tesla revealed when it unveiled the vehicle a year and a half ago at the “We, Robot” event in Los Angeles.
Musk said on numerous occasions that Tesla plans to hit the $0.20 cents per mile mark with the Cybercab, describing a “clear path” to achieving that figure and emphasizing it is the “full considered” cost, which would include energy, maintenance, cleaning, depreciation, and insurance.
Probably true
— Elon Musk (@elonmusk) January 22, 2026
ARK’s report showed that the Cybercab would be roughly half the cost of the Waymo 6th Gen Robotaxi in 2030, as that would come in at around $0.40 per mile all in. Cybercab, at scale, would be at $0.20.

Credit: ARK Invest
This would be a dramatic decrease in the cost of operation for Tesla, and the savings would then be passed on to customers who choose to utilize the ride-sharing service for their own transportation needs.
The U.S. average cost of new vehicle ownership is about $0.77 per mile, according to AAA. Meanwhile, Uber and Lyft rideshares often cost between $1 and $4 per mile, while Waymo can cost between $0.60 and $1 or more per mile, according to some estimates.
Tesla’s engineering has been the true driver of these cost efficiencies, and its focus on creating a vehicle that is as cost-effective to operate as possible is truly going to pay off as the vehicle begins to scale. Tesla wants to get the Cybercab to about 5.5-6 miles per kWh, which has been discussed with prototypes.
Additionally, fewer parts due to the umboxed manufacturing process, a lower initial cost, and eliminating the need to pay humans for their labor would also contribute to a cheaper operational cost overall. While aspirational, all of the ingredients for this to be a real goal are there.
It may take some time as Tesla needs to hammer the manufacturing processes, and Musk has said there will be growing pains early. This week, he said regarding the early production efforts:
“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”