Connect with us

News

SpaceX Starlink satellite internet tested in the field in Antarctica

Starlink appears to be performing well during Antarctic field testing. (COLDEX)

Published

on

SpaceX’s Starlink internet continues to find success in Antarctica, Earth’s icy southernmost continent and has spread beyond McMurdo Station.

The company first reported that Starlink reached Antarctica as part of a National Science Foundation experiment in September 2022. The milestone also marked the satellite internet network’s arrival on all seven continents.

A series of lasers

Just ~5% of the almost 3400 working Starlink satellites currently in orbit make coverage of Antarctica (and the Arctic) possible. SpaceX currently has 181 polar-orbiting satellites in operational orbits, likely providing a decent amount of coverage in polar regions. But that’s only a third of the 520 polar satellites SpaceX’s Starlink Gen1 constellation will have once complete, meaning that coverage is likely intermittent for the time being.

Those polar satellites must also use optical interlinks (lasers) to connect Antarctic users to ground stations hundreds or thousands of miles away, as the vast and sparsely populated continent has no Starlink ground stations. Instead, users are connected to the internet via space lasers that route their communications to and from ground stations in South America, Australia, New Zealand, and other nearby locales.

Each Starlink V1.5 satellite has several laser link terminals that allow the constellation to create a mesh network in space and reach even the remotest users. (SpaceX)

Studying the oldest ice on Earth

The general purpose of the Center for Oldest Ice Exploration (COLDEX) field experiment Starlink is aiding is to find the oldest ice on Earth. That old ice allows scientists to peer back tens of thousands, hundreds of thousands, or even millions of years back into Earth’s past. Most importantly for the modern era, that ice can contain shockingly detailed information about the history of Earth’s climate.

Researchers like Dr. Neff collect ice cores by drilling miles into Antarctic ice sheets. Once removed, packaged, and carefully shipped by plane to labs around the world, the data extracted from those ice cores can tell researchers how the Earth has responded in the past to major and minor changes in climate. Knowing how it has responded and behaved before has helped scientists around the world determine with near certainty that human greenhouse gas emissions are causing average global temperatures to increase at a relatively rapid pace. Further studies, like those being done now, may help specify what kind of changes we can expect as climates warm; allowing cities, countries, and humanity as a whole to prepare for the worst while (hopefully) trying to prevent those outcomes.

Advertisement
-->

COLDEX began testing Starlink in the field in early December 2022. It’s not entirely clear if that testing is still ongoing, but Dr. Peter Neff appears to be optimistic either way. In a January 21st tweet, the assistant professor and field research director said that he was excited “to see how [Starlink] & other modes of high-speed connectivity can advance [science] communication [and]…alter how we do science on the ice.”

Finding a balance

The National Science Foundation has been a part of both Antarctic Starlink experiments, thus far, and finds itself in a unique position. Through funding and other means, the government agency is aiding efforts to test the limits of the SpaceX network and discover how it can benefit science (and improve life) in some of the harshest environments on Earth. Simultaneously, NSF holds a sort of supervisory role over other aspects of SpaceX’s Starlink constellation.

For the most part, that relationship is on an even keel and SpaceX has been highly forthcoming and happy to cooperate. Even without any explicit legal requirement, SpaceX has made wide-reaching changes to its satellites and continues to experiment with ways to reduce their brightness to ground observers and limit their impact on astronomy. Nonetheless, the FCC’s decision to tie SpaceX’s next-generation Starlink Gen2 constellation license with its cooperation with the NSF has given the latter agency a bit more regulatory power than it had before.

That arguably makes the involvement of the NSF (or NSF-funded researchers) in testing Starlink’s ability to benefit science even more important. Knowing firsthand how impactful the ability to access high-bandwidth internet can be in the field and at remote camps, the NSF should be better suited to make the kind of cost-benefit analyses required to determine how much of an impact (on the night sky and astronomy) is acceptable relative to the benefits Starlink can provide.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla CEO Elon Musk shades Waymo: ‘Never really had a chance’

Published

on

Credit: Tesla

Tesla CEO Elon Musk shaded Waymo in a post on X on Wednesday, stating the company “never really had a chance” and that it “will be obvious in hindsight.”

Tesla and Waymo are the two primary contributors to the self-driving efforts in the United States, with both operating driverless ride-hailing services in the country. Tesla does have a Safety Monitor present in its vehicles in Austin, Texas, and someone in the driver’s seat in its Bay Area operation.

Musk says the Austin operation will be completely void of any Safety Monitors by the end of the year.

With the two companies being the main members of the driverless movement in the U.S., there is certainly a rivalry. The two have sparred back and forth with their geofences, or service areas, in both Austin and the Bay Area.

While that is a metric for comparison now, ultimately, it will not matter in the coming years, as the two companies will likely operate in a similar fashion.

Waymo has geared its business toward larger cities, and Tesla has said that its self-driving efforts will expand to every single one of its vehicles in any location globally. This is where the true difference between the two lies, along with the fact that Tesla uses its own vehicles, while Waymo has several models in its lineup from different manufacturers.

The two also have different ideas on how to solve self-driving, as Tesla uses a vision-only approach. Waymo relies on several things, including LiDAR, which Musk once called “a fool’s errand.”

This is where Tesla sets itself apart from the competition, and Musk highlighted the company’s position against Waymo.

Jeff Dean, the Chief Scientist for Google DeepMind, said on X:

“I don’t think Tesla has anywhere near the volume of rider-only autonomous miles that Waymo has (96M for Waymo, as of today). The safety data is quite compelling for Waymo, as well.”

Musk replied:

“Waymo never really had a chance against Tesla. This will be obvious in hindsight.”

Tesla stands to have a much larger fleet of vehicles in the coming years if it chooses to activate Robotaxi services with all passenger vehicles. A simple Over-the-Air update will activate this capability, while Waymo would likely be confined to the vehicles it commissions as Robotaxis.

Continue Reading

News

Tesla supplier Samsung preps for AI5 production with latest move

According to a new report from Sedaily, Samsung is accelerating its preparation for U.S. production of the AI5 chips by hiring veteran engineers for its Customer Engineering team.

Published

on

Credit: Tesla

Tesla supplier Samsung is preparing to manufacture the AI5 chip, which will launch the company’s self-driving efforts even further, with its latest move.

According to a new report from Sedaily, Samsung is accelerating its preparation for U.S. production of the AI5 chips by hiring veteran engineers for its Customer Engineering team, which will help resolve complex foundry challenges, stabilize production and yields, and ensure manufacturing goes smoothly for the new project.

The hiring push signals that Tesla’s AI5 project is moving forward quickly at Samsung, which was one of two suppliers to win a contract order from the world’s leading EV maker.

TSMC is the other. TSMC is using its 3nm process, reportedly, while Samsung will do a 2nm as a litmus test for the process.

The different versions are due to the fact that “they translate designs to physical form differently,” CEO Elon Musk said recently. The goal is for the two to operate identically, obviously, which is a challenge.

Some might remember Apple’s A9 “Chipgate” saga, which found that the chips differed in performance because of different manufacturers.

The AI5 chip is Tesla’s next-generation hardware chip for its self-driving program, but it will also contribute to the Optimus program and other AI-driven features in both vehicles and other projects. Currently, Tesla utilizes AI4, formerly known as HW4 or Hardware 4, in its vehicles.

Tesla teases new AI5 chip that will revolutionize self-driving

AI5 is specialized for use by Tesla as it will work in conjunction with the company’s Neural Networks, focusing on real-time inference to make safe and logical decisions during operation.

Musk said it was an “amazing design” and an “immense jump” from Tesla’s current AI4 chip. It will be roughly 40 times faster, and have 8 times the raw compute, with 9 times the memory capacity. It is also expected to be three times as efficient per watt as AI4.

AI5 will make its way into “maybe a small number of units” next year, Musk confirmed. However, it will not make its way to high-volume production until 2027. AI5 is not the last step, either, as Musk has already confirmed AI6 would likely enter production in mid-2028.

Continue Reading

News

Tesla discloses interesting collaboration partner for Supercharging

This BOXABL collaboration would be a great way to add a rest stop to a rural Supercharging location, and could lead to more of these chargers across the U.S. 

Published

on

Credit: Grok

Tesla disclosed an interesting collaboration partner in an SEC filing, which looks like an indication of a potential project at Supercharger sites.

Tesla said on Tuesday in the filing that it was entering an agreement with BOXABL to design and build a Micromenity structure. Simply put, this is a modular building, usually a few hundred square feet in size, and it has been seen at Superchargers in Europe.

In Magnant, France, Tesla opened a small building at a Supercharger that is available to all EV owners. There are snacks and drinks inside, including ice cream, coffee, a gaming console, and restrooms. It gives people an opportunity to get up and out of their cars while charging.

This building was not built by BOXABL, but instead by bk World Lounges. It is likely the final Supercharging stop before people get to Paris, as it is located 250 kilometers, or 155 miles, from the City of Light.

 

Voir cette publication sur Instagram

 

Une publication partagée par Gerold Wolfarth (@gerold_wolfarth)

Magnant has 56 stalls, so it is a large Supercharging stop compared to most. The building could be a sign of things to come, especially as Tesla has opened up larger Supercharger stations along major roadways.

It is for just a single building, as the Scope of Work within the filing states “a comprehensive package for one Micromenity building.”

Superchargers are commonly located at gas stations, shopping centers, and other major points of interest. However, there are some stops that are isolated from retail or entertainment.

This BOXABL collaboration would be a great way to add a rest stop to a rural Supercharging location, and could lead to more of these chargers across the U.S.

Tesla has done a lot of really great things for Supercharging this year.

Along with widespread expansion, the company launched the “Charging Passport” this week, opened the largest Supercharger in the world in Lost Hills, California, with 168 chargers, opened the Tesla Diner, a drive-in movie restaurant in Los Angeles, and initiated access to the infrastructure to even more automakers.

Continue Reading