News
SpaceX Starlink satellite internet tested in the field in Antarctica
SpaceX’s Starlink internet continues to find success in Antarctica, Earth’s icy southernmost continent and has spread beyond McMurdo Station.
The company first reported that Starlink reached Antarctica as part of a National Science Foundation experiment in September 2022. The milestone also marked the satellite internet network’s arrival on all seven continents.
The update that's rolling out to the fleet makes full use of the front and rear steering travel to minimize turning circle. In this case a reduction of 1.6 feet just over the air— Wes (@wmorrill3) April 16, 2024
A series of lasers
Just ~5% of the almost 3400 working Starlink satellites currently in orbit make coverage of Antarctica (and the Arctic) possible. SpaceX currently has 181 polar-orbiting satellites in operational orbits, likely providing a decent amount of coverage in polar regions. But that’s only a third of the 520 polar satellites SpaceX’s Starlink Gen1 constellation will have once complete, meaning that coverage is likely intermittent for the time being.
Those polar satellites must also use optical interlinks (lasers) to connect Antarctic users to ground stations hundreds or thousands of miles away, as the vast and sparsely populated continent has no Starlink ground stations. Instead, users are connected to the internet via space lasers that route their communications to and from ground stations in South America, Australia, New Zealand, and other nearby locales.

Studying the oldest ice on Earth
The general purpose of the Center for Oldest Ice Exploration (COLDEX) field experiment Starlink is aiding is to find the oldest ice on Earth. That old ice allows scientists to peer back tens of thousands, hundreds of thousands, or even millions of years back into Earth’s past. Most importantly for the modern era, that ice can contain shockingly detailed information about the history of Earth’s climate.
Researchers like Dr. Neff collect ice cores by drilling miles into Antarctic ice sheets. Once removed, packaged, and carefully shipped by plane to labs around the world, the data extracted from those ice cores can tell researchers how the Earth has responded in the past to major and minor changes in climate. Knowing how it has responded and behaved before has helped scientists around the world determine with near certainty that human greenhouse gas emissions are causing average global temperatures to increase at a relatively rapid pace. Further studies, like those being done now, may help specify what kind of changes we can expect as climates warm; allowing cities, countries, and humanity as a whole to prepare for the worst while (hopefully) trying to prevent those outcomes.
COLDEX began testing Starlink in the field in early December 2022. It’s not entirely clear if that testing is still ongoing, but Dr. Peter Neff appears to be optimistic either way. In a January 21st tweet, the assistant professor and field research director said that he was excited “to see how [Starlink] & other modes of high-speed connectivity can advance [science] communication [and]…alter how we do science on the ice.”
Finding a balance
The National Science Foundation has been a part of both Antarctic Starlink experiments, thus far, and finds itself in a unique position. Through funding and other means, the government agency is aiding efforts to test the limits of the SpaceX network and discover how it can benefit science (and improve life) in some of the harshest environments on Earth. Simultaneously, NSF holds a sort of supervisory role over other aspects of SpaceX’s Starlink constellation.
For the most part, that relationship is on an even keel and SpaceX has been highly forthcoming and happy to cooperate. Even without any explicit legal requirement, SpaceX has made wide-reaching changes to its satellites and continues to experiment with ways to reduce their brightness to ground observers and limit their impact on astronomy. Nonetheless, the FCC’s decision to tie SpaceX’s next-generation Starlink Gen2 constellation license with its cooperation with the NSF has given the latter agency a bit more regulatory power than it had before.
That arguably makes the involvement of the NSF (or NSF-funded researchers) in testing Starlink’s ability to benefit science even more important. Knowing firsthand how impactful the ability to access high-bandwidth internet can be in the field and at remote camps, the NSF should be better suited to make the kind of cost-benefit analyses required to determine how much of an impact (on the night sky and astronomy) is acceptable relative to the benefits Starlink can provide.
News
Tesla aims to combat common Full Self-Driving problem with new patent
Tesla writes in the patent that its autonomous and semi-autonomous vehicles are heavily reliant on camera systems to navigate and interact with their environment.
Tesla is aiming to combat a common Full Self-Driving problem with a new patent.
One issue with Tesla’s vision-based approach is that sunlight glare can become a troublesome element of everyday travel. Full Self-Driving is certainly an amazing technology, but there are still things Tesla is aiming to figure out with its development.
Unfortunately, it is extremely difficult to get around this issue, and even humans need ways to combat it when they’re driving, as we commonly use sunglasses or sun visors to give us better visibility.
Cameras obviously do not have these ways to fight sunglare, but a new patent Tesla recently had published aims to fight this through a “glare shield.”
Tesla writes in the patent that its autonomous and semi-autonomous vehicles are heavily reliant on camera systems to navigate and interact with their environment.

The ability to see surroundings is crucial for accurate performance, and glare is one element of interference that has yet to be confronted.
Tesla described the patent, which will utilize “a textured surface composed of an array of micro-cones, or cone-shaped formations, which serve to scatter incident light in various directions, thereby reducing glare and improving camera vision.”

The patent was first spotted by Not a Tesla App.
The design of the micro-cones is the first element of the puzzle to fight the excess glare. The patent says they are “optimized in size, angle, and orientation to minimize Total Hemispherical Reflectance (THR) and reflection penalty, enhancing the camera’s ability to accurately interpret visual data.”
Additionally, there is an electromechanical system for dynamic orientation adjustment, which will allow the micro-cones to move based on the angle of external light sources.
This is not the only thing Tesla is mulling to resolve issues with sunlight glare, as it has also worked on two other ways to combat the problem. One thing the company has discussed is a direct photon count.
CEO Elon Musk said during the Q2 Earnings Call:
“We use an approach which is direct photon count. When you see a processed image, so the image that goes from the sort of photon counter — the silicon photon counter — that then goes through a digital signal processor or image signal processor, that’s normally what happens. And then the image that you see looks all washed out, because if you point the camera at the sun, the post-processing of the photon counting washes things out.”
Future Hardware iterations, like Hardware 5 and Hardware 6, could also integrate better solutions for the sunglare issue, such as neutral density filters or heated lenses, aiming to solve glare more effectively.
Elon Musk
Delaware Supreme Court reinstates Elon Musk’s 2018 Tesla CEO pay package
The unanimous decision criticized the prior total rescission as “improper and inequitable,” arguing that it left Musk uncompensated for six years of transformative leadership at Tesla.
The Delaware Supreme Court has overturned a lower court ruling, reinstating Elon Musk’s 2018 compensation package originally valued at $56 billion but now worth approximately $139 billion due to Tesla’s soaring stock price.
The unanimous decision criticized the prior total rescission as “improper and inequitable,” arguing that it left Musk uncompensated for six years of transformative leadership at Tesla. Musk quickly celebrated the outcome on X, stating that he felt “vindicated.” He also shared his gratitude to TSLA shareholders.
Delaware Supreme Court makes a decision
In a 49-page ruling Friday, the Delaware Supreme Court reversed Chancellor Kathaleen McCormick’s 2024 decision that voided the 2018 package over alleged board conflicts and inadequate shareholder disclosures. The high court acknowledged varying views on liability but agreed rescission was excessive, stating it “leaves Musk uncompensated for his time and efforts over a period of six years.”
The 2018 plan granted Musk options on about 304 million shares upon hitting aggressive milestones, all of which were achieved ahead of time. Shareholders overwhelmingly approved it initially in 2018 and ratified it once again in 2024 after the Delaware lower court struck it down. The case against Musk’s 2018 pay package was filed by plaintiff Richard Tornetta, who held just nine shares when the compensation plan was approved.
A hard-fought victory
As noted in a Reuters report, Tesla’s win avoids a potential $26 billion earnings hit from replacing the award at current prices. Tesla, now Texas-incorporated, had hedged with interim plans, including a November 2025 shareholder-approved package potentially worth $878 billion tied to Robotaxi and Optimus goals and other extremely aggressive operational milestones.
The saga surrounding Elon Musk’s 2018 pay package ultimately damaged Delaware’s corporate appeal, prompting a number of high-profile firms, such as Dropbox, Roblox, Trade Desk, and Coinbase, to follow Tesla’s exodus out of the state. What added more fuel to the issue was the fact that Tornetta’s legal team, following the lower court’s 2024 decision, demanded a fee request of more than $5.1 billion worth of TSLA stock, which was equal to an hourly rate of over $200,000.
Delaware Supreme Court Elon Musk 2018 Pay Package by Simon Alvarez
News
Tesla Cybercab tests are going on overdrive with production-ready units
Tesla is ramping its real-world tests of the Cybercab, with multiple sightings of the vehicle being reported across social media this week.
Tesla is ramping its real-world tests of the Cybercab, with multiple sightings of the autonomous two-seater being reported across social media this week. Based on videos of the vehicle that have been shared online, it appears that Cybercab tests are underway across multiple states.
Recent Cybercab sightings
Reports of Cybercab tests have ramped this week, with a vehicle that looked like a production-ready prototype being spotted at Apple’s Visitor Center in California. The vehicle in this sighting was interesting as it was equipped with a steering wheel. The vehicle also featured some changes to the design of its brake lights.
The Cybercab was also filmed testing at the Fremont factory’s test track, which also seemed to involve a vehicle that looked production-ready. This also seemed to be the case for a Cybercab that was spotted in Austin, Texas, which happened to be undergoing real-world tests. Overall, these sightings suggest that Cybercab testing is fully underway, and the vehicle is really moving towards production.
Production design all but finalized?
Recently, a near-production-ready Cybercab was showcased at Tesla’s Santana Row showroom in San Jose. The vehicle was equipped with frameless windows, dual windshield wipers, powered butterfly door struts, an extended front splitter, an updated lightbar, new wheel covers, and a license plate bracket. Interior updates include redesigned dash/door panels, refined seats with center cupholders, updated carpet, and what appeared to be improved legroom.
There seems to be a pretty good chance that the Cybercab’s design has been all but finalized, at least considering Elon Musk’s comments at the 2025 Annual Shareholder Meeting. During the event, Musk confirmed that the vehicle will enter production around April 2026, and its production targets will be quite ambitious.