News
SpaceX “intends” to start launching next-generation Starlink satellites in March
In a new Q&A with the Federal Communications Commission (FCC), SpaceX says it still “plans” and “intends” to begin launching the next generation of Starlink satellites as early as March 2022.
In August 2021, SpaceX filed an application modification request with the FCC in a bid to change its plans for the next-generation “Gen2” Starlink constellation, which still aims to drastically improve and expand upon its first few phases. SpaceX filed the first unmodified Gen2 Starlink application with the FCC in May 2020, requesting permission to launch an unprecedented 30,000 satellites. While the size of the proposed constellation is extraordinary, the FCC has also been exceptionally slow to process it. Only five months after SpaceX submitted its Starlink Gen2 modification request and nineteen months after its original Gen2 application did the FCC finally accept it for filing, which means that it has taken more than a year and a half to merely start the official review process.
That extremely slow pace of work could pose problems for SpaceX’s characteristically ambitious deployment schedule.
In a January 7th, 2022 electronic filing in which SpaceX answered a dozen questions from the FCC, the company didn’t outright criticize the extreme sluggishness with which it was reviewing the application but the sentiment was still just below the surface throughout it. After noting that the FCC continues to ask for far more information from SpaceX than it does from other constellation applications, some of which have recently received licenses in spite of that, SpaceX states that it while it “filed its Gen2 Application more than nineteen months ago…and its Amendment nearly five months ago, they were accepted for filing only two weeks ago.”
It’s perhaps no coincidence that that inexplicable delay only came to an end two weeks after FCC Chairwoman Jessica Rosenworcel – who SpaceX notes recently acknowledged a “need to speed the processing of applications to keep pace with…innovation” – was finally confirmed by the US Senate.
Most importantly, though, SpaceX used its extensive Q&A to reveal that it downselected to one of the two similar constellation configurations proposed in its Gen2 application modification. Specifically, SpaceX says it will continue to develop Configuration 1 only, which is designed and organized to take full advantage of the company’s next-generation Starship launch vehicle. That should simplify the licensing process for many Starlink competitors, which have sought to hobble SpaceX’s application with bizarre requests to the FCC and complained ad nauseam about how much of a burden analyzing two potential constellation layouts was for them. Now they will only have to consider one constellation layout, making SpaceX’s Gen2 constellation a more traditional – if still massive – proposal.
Clearly lacking a great deal of self-awareness about the irony of such of a question, the FCC also saw fit to ask SpaceX for “any updates regarding the expected timing of launches for the Gen2 system.” The timing of Starlink Gen2 launches is obviously unequivocally contingent upon FCC approval more than 19 months after SpaceX first submitted an application for said approval. Nonetheless, SpaceX politely answered the question, revealing that it had “informed Commission staff before filing its Amendment” in August 2021 that it “plans to have Gen2 satellites prepared for launch as soon as March 2022” and “still intends to begin launching [Starlink Gen2 satellites] as early as March 2022.”
Many readers and industry followers interpreted this as an implicit claim that Starship will be ready to launch Starlink Gen2 satellites as early as March 2022 – just another of the company’s detached-from-reality schedule estimates, in other words. That’s simply not the case, though. While SpaceX does confirm that it’s settling on a Starlink Gen2 configuration that will explicitly depend upon Starship for the full 29,988-satellite constellation’s timely, cost-effective deployment, FCC deployment and operations licensing are almost inherently unconcerned with how the constellation gets into space. For example, the original Gen2 application SpaceX modified last August never mentioned which launch vehicle would be responsible for launching tens of thousands of satellites. So long as the rocket is compliant with FCC regulations and has an active permit for any given launch, which is also the responsibility of a different bureau, the FCC is effectively indifferent about which rockets launch a given constellation.
In other words, while SpaceX has made it clear that Starlink Gen2 Configuration 1 is optimized for Starship, SpaceX will be free to launch Gen2 satellites on any rocket it wants if or when the FCC approves the constellation. Assuming that Starlink Gen2 satellites will still be able to fit inside a 5.2m (17 ft) wide payload fairing, that includes Falcon 9. Further, in early 2018, the FCC allowed SpaceX to launch the first two Starlink satellite prototypes before it had issued the company a license for the full constellation, making it clear that with the right paperwork, prospective constellation operators can launch and test prototype satellites before their full constellations are approved.
This is to say that there is nothing theoretically preventing SpaceX from again pursuing permission to launch a few prototype Starlink satellites (this time Gen2) before the FCC has finished reviewing and approving the whole constellation. In fact, anything less would actually be surprising and unusual for the company. When SpaceX says in January 2022 that it plans to have Gen2 satellites ready for launch by March 2022, it’s thus not hard to believe that that’s the truth. Perhaps it will take a month or two longer than planned to complete the prototypes, secure temporary FCC approval, and build and license a new E-band ground station, but it’s still believable that SpaceX will be ready and able to launch the first few Starlink Gen2 satellites on Falcon 9 within the next several months. Above all else, unless SpaceX has explicitly designed Starlink Gen2 satellites such that they no longer fit inside a Falcon fairing, nothing is forcing SpaceX to wait for Starship if Gen2 prototypes are ready to launch before the next-gen rocket.
Given that Starship will have to wait until at least March 2022 for its first orbital test flight after FAA review delays, it’s obviously implausible that the rocket will be ready to launch Starlink prototypes by then. Starship S20 – currently said by CEO Elon Musk to be the first space-bound prototype – doesn’t even have a payload bay. Unless SpaceX wants to wait several more months after that to kick off the flight-testing phase of Starlink Gen2 development, it’s likely that the first few satellites will launch on Falcon 9 – either alongside routine Starlink V1.5 launches or on their own.
News
Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count
That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.
Tesla already has the pieces in place for a full Robotaxi service that works regardless of passenger count, even if the backbone of the program is a small autonomous two-seater.
That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.
Two-seat Cybercabs make perfect sense
During the Q&A portion of the call, Tesla Vice President of Vehicle Engineering Lars Moravy pointed out that more than 90% of vehicle miles traveled today involve two or fewer passengers. This, the executive noted, directly informed the design of the Cybercab.
“Autonomy and Cybercab are going to change the global market size and mix quite significantly. I think that’s quite obvious. General transportation is going to be better served by autonomy as it will be safer and cheaper. Over 90% of vehicle miles traveled are with two or fewer passengers now. This is why we designed Cybercab that way,” Moravy said.
Elon Musk expanded on the point, emphasizing that there is no fallback for Tesla’s bet on the Cybercab’s autonomous design. He reiterated that the autonomous two seater’s production is expected to start in April and noted that, over time, Tesla expects to produce far more Cybercabs than all of its other vehicles combined.
“Just to add to what Lars said there. The point that Lars made, which is that 90% of miles driven are with one or two passengers or one or two occupants, essentially, is a very important one… So this is clearly, there’s no fallback mechanism here. It’s like this car either drives itself or it does not drive… We would expect over time to make far more CyberCabs than all of our other vehicles combined. Given that 90% of distance driven or distance being distance traveled exactly, no longer driving, is one or two people,” Musk said.
Tesla’s robotaxi lineup is already here
The more interesting takeaway from the Q4 and FY 2025 earnings call is the fact that Tesla does not need the Cybercab to serve every possible passenger scenario, simply because the company already has a functional Robotaxi model that scales by vehicle type.
The Cybercab will handle the bulk of the Robotaxi network’s trips, but for groups that need three or four seats, the Model Y fills that role. For higher-end or larger-family use cases, the extended-wheelbase Model Y L could cover five or six occupants, provided that Elon Musk greenlights the vehicle for North America. And for even larger groups or commercial transport, Tesla has already unveiled the Robovan, which could seat over ten people.
Rather than forcing one vehicle to satisfy every use case, Tesla’s approach mirrors how transportation works today. Different vehicles will be used for different needs, while unifying everything under a single autonomous software and fleet platform.
News
Tesla Cybercab spotted with interesting charging solution, stimulating discussion
The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.
Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.
The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.
But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:
🚨 Tesla Cybercab charging port is in the rear of the vehicle!
Here’s a great look at plugging it in!!
— TESLARATI (@Teslarati) January 29, 2026
The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.
Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.
However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.
Wireless for Operation, Wired for Downtime
It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.
The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.
Tesla wireless charging patent revealed ahead of Robotaxi unveiling event
However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.
In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.
Induction Charging Challenges
Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.
While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.
Production Timing and Potential Challenges
With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.
It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.
In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.
News
Tesla confirms that it finally solved its 4680 battery’s dry cathode process
The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years.
The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Dry cathode 4680 cells
In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.
The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”
Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.
4680 packs for Model Y
Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla:
“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”
The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.