News
SpaceX “intends” to start launching next-generation Starlink satellites in March
In a new Q&A with the Federal Communications Commission (FCC), SpaceX says it still “plans” and “intends” to begin launching the next generation of Starlink satellites as early as March 2022.
In August 2021, SpaceX filed an application modification request with the FCC in a bid to change its plans for the next-generation “Gen2” Starlink constellation, which still aims to drastically improve and expand upon its first few phases. SpaceX filed the first unmodified Gen2 Starlink application with the FCC in May 2020, requesting permission to launch an unprecedented 30,000 satellites. While the size of the proposed constellation is extraordinary, the FCC has also been exceptionally slow to process it. Only five months after SpaceX submitted its Starlink Gen2 modification request and nineteen months after its original Gen2 application did the FCC finally accept it for filing, which means that it has taken more than a year and a half to merely start the official review process.
That extremely slow pace of work could pose problems for SpaceX’s characteristically ambitious deployment schedule.
In a January 7th, 2022 electronic filing in which SpaceX answered a dozen questions from the FCC, the company didn’t outright criticize the extreme sluggishness with which it was reviewing the application but the sentiment was still just below the surface throughout it. After noting that the FCC continues to ask for far more information from SpaceX than it does from other constellation applications, some of which have recently received licenses in spite of that, SpaceX states that it while it “filed its Gen2 Application more than nineteen months ago…and its Amendment nearly five months ago, they were accepted for filing only two weeks ago.”
It’s perhaps no coincidence that that inexplicable delay only came to an end two weeks after FCC Chairwoman Jessica Rosenworcel – who SpaceX notes recently acknowledged a “need to speed the processing of applications to keep pace with…innovation” – was finally confirmed by the US Senate.
Most importantly, though, SpaceX used its extensive Q&A to reveal that it downselected to one of the two similar constellation configurations proposed in its Gen2 application modification. Specifically, SpaceX says it will continue to develop Configuration 1 only, which is designed and organized to take full advantage of the company’s next-generation Starship launch vehicle. That should simplify the licensing process for many Starlink competitors, which have sought to hobble SpaceX’s application with bizarre requests to the FCC and complained ad nauseam about how much of a burden analyzing two potential constellation layouts was for them. Now they will only have to consider one constellation layout, making SpaceX’s Gen2 constellation a more traditional – if still massive – proposal.
Clearly lacking a great deal of self-awareness about the irony of such of a question, the FCC also saw fit to ask SpaceX for “any updates regarding the expected timing of launches for the Gen2 system.” The timing of Starlink Gen2 launches is obviously unequivocally contingent upon FCC approval more than 19 months after SpaceX first submitted an application for said approval. Nonetheless, SpaceX politely answered the question, revealing that it had “informed Commission staff before filing its Amendment” in August 2021 that it “plans to have Gen2 satellites prepared for launch as soon as March 2022” and “still intends to begin launching [Starlink Gen2 satellites] as early as March 2022.”
Many readers and industry followers interpreted this as an implicit claim that Starship will be ready to launch Starlink Gen2 satellites as early as March 2022 – just another of the company’s detached-from-reality schedule estimates, in other words. That’s simply not the case, though. While SpaceX does confirm that it’s settling on a Starlink Gen2 configuration that will explicitly depend upon Starship for the full 29,988-satellite constellation’s timely, cost-effective deployment, FCC deployment and operations licensing are almost inherently unconcerned with how the constellation gets into space. For example, the original Gen2 application SpaceX modified last August never mentioned which launch vehicle would be responsible for launching tens of thousands of satellites. So long as the rocket is compliant with FCC regulations and has an active permit for any given launch, which is also the responsibility of a different bureau, the FCC is effectively indifferent about which rockets launch a given constellation.
In other words, while SpaceX has made it clear that Starlink Gen2 Configuration 1 is optimized for Starship, SpaceX will be free to launch Gen2 satellites on any rocket it wants if or when the FCC approves the constellation. Assuming that Starlink Gen2 satellites will still be able to fit inside a 5.2m (17 ft) wide payload fairing, that includes Falcon 9. Further, in early 2018, the FCC allowed SpaceX to launch the first two Starlink satellite prototypes before it had issued the company a license for the full constellation, making it clear that with the right paperwork, prospective constellation operators can launch and test prototype satellites before their full constellations are approved.
This is to say that there is nothing theoretically preventing SpaceX from again pursuing permission to launch a few prototype Starlink satellites (this time Gen2) before the FCC has finished reviewing and approving the whole constellation. In fact, anything less would actually be surprising and unusual for the company. When SpaceX says in January 2022 that it plans to have Gen2 satellites ready for launch by March 2022, it’s thus not hard to believe that that’s the truth. Perhaps it will take a month or two longer than planned to complete the prototypes, secure temporary FCC approval, and build and license a new E-band ground station, but it’s still believable that SpaceX will be ready and able to launch the first few Starlink Gen2 satellites on Falcon 9 within the next several months. Above all else, unless SpaceX has explicitly designed Starlink Gen2 satellites such that they no longer fit inside a Falcon fairing, nothing is forcing SpaceX to wait for Starship if Gen2 prototypes are ready to launch before the next-gen rocket.
Given that Starship will have to wait until at least March 2022 for its first orbital test flight after FAA review delays, it’s obviously implausible that the rocket will be ready to launch Starlink prototypes by then. Starship S20 – currently said by CEO Elon Musk to be the first space-bound prototype – doesn’t even have a payload bay. Unless SpaceX wants to wait several more months after that to kick off the flight-testing phase of Starlink Gen2 development, it’s likely that the first few satellites will launch on Falcon 9 – either alongside routine Starlink V1.5 launches or on their own.
News
Tesla starts showing how FSD will change lives in Europe
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options.
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Officials see real impact on rural residents
Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”
The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.
What the Ministry for Economic Affairs and Transport says
Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents.
“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe.
“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post.
News
Tesla China quietly posts Robotaxi-related job listing
Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China.
As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Robotaxi-specific role
The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi.
Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.
China Robotaxi launch
China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.
This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees.
Elon Musk
Elon Musk and Tesla AI Director share insights after empty driver seat Robotaxi rides
The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.
Tesla CEO Elon Musk and AI Director Ashok Elluswamy celebrated Christmas Eve by sharing personal experiences with Robotaxi vehicles that had no safety monitor or occupant in the driver’s seat. Musk described the system’s “perfect driving” around Austin, while Elluswamy posted video from the back seat, calling it “an amazing experience.”
The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.
Elon and Ashok’s firsthand Robotaxi insights
Prior to Musk and the Tesla AI Director’s posts, sightings of unmanned Teslas navigating public roads were widely shared on social media. One such vehicle was spotted in Austin, Texas, which Elon Musk acknowleged by stating that “Testing is underway with no occupants in the car.”
Based on his Christmas Eve post, Musk seemed to have tested an unmanned Tesla himself. “A Tesla with no safety monitor in the car and me sitting in the passenger seat took me all around Austin on Sunday with perfect driving,” Musk wrote in his post.
Elluswamy responded with a 2-minute video showing himself in the rear of an unmanned Tesla. The video featured the vehicle’s empty front seats, as well as its smooth handling through real-world traffic. He captioned his video with the words, “It’s an amazing experience!”
Towards Unsupervised operations
During an xAI Hackathon earlier this month, Elon Musk mentioned that Tesla owed be removing Safety Monitors from its Robotaxis in Austin in just three weeks. “Unsupervised is pretty much solved at this point. So there will be Tesla Robotaxis operating in Austin with no one in them. Not even anyone in the passenger seat in about three weeks,” he said. Musk echoed similar estimates at the 2025 Annual Shareholder Meeting and the Q3 2025 earnings call.
Considering the insights that were posted Musk and Elluswamy, it does appear that Tesla is working hard towards operating its Robotaxis with no safety monitors. This is quite impressive considering that the service was launched just earlier this year.