News
SpaceX “intends” to start launching next-generation Starlink satellites in March
In a new Q&A with the Federal Communications Commission (FCC), SpaceX says it still “plans” and “intends” to begin launching the next generation of Starlink satellites as early as March 2022.
In August 2021, SpaceX filed an application modification request with the FCC in a bid to change its plans for the next-generation “Gen2” Starlink constellation, which still aims to drastically improve and expand upon its first few phases. SpaceX filed the first unmodified Gen2 Starlink application with the FCC in May 2020, requesting permission to launch an unprecedented 30,000 satellites. While the size of the proposed constellation is extraordinary, the FCC has also been exceptionally slow to process it. Only five months after SpaceX submitted its Starlink Gen2 modification request and nineteen months after its original Gen2 application did the FCC finally accept it for filing, which means that it has taken more than a year and a half to merely start the official review process.
That extremely slow pace of work could pose problems for SpaceX’s characteristically ambitious deployment schedule.
In a January 7th, 2022 electronic filing in which SpaceX answered a dozen questions from the FCC, the company didn’t outright criticize the extreme sluggishness with which it was reviewing the application but the sentiment was still just below the surface throughout it. After noting that the FCC continues to ask for far more information from SpaceX than it does from other constellation applications, some of which have recently received licenses in spite of that, SpaceX states that it while it “filed its Gen2 Application more than nineteen months ago…and its Amendment nearly five months ago, they were accepted for filing only two weeks ago.”
It’s perhaps no coincidence that that inexplicable delay only came to an end two weeks after FCC Chairwoman Jessica Rosenworcel – who SpaceX notes recently acknowledged a “need to speed the processing of applications to keep pace with…innovation” – was finally confirmed by the US Senate.
Most importantly, though, SpaceX used its extensive Q&A to reveal that it downselected to one of the two similar constellation configurations proposed in its Gen2 application modification. Specifically, SpaceX says it will continue to develop Configuration 1 only, which is designed and organized to take full advantage of the company’s next-generation Starship launch vehicle. That should simplify the licensing process for many Starlink competitors, which have sought to hobble SpaceX’s application with bizarre requests to the FCC and complained ad nauseam about how much of a burden analyzing two potential constellation layouts was for them. Now they will only have to consider one constellation layout, making SpaceX’s Gen2 constellation a more traditional – if still massive – proposal.
Clearly lacking a great deal of self-awareness about the irony of such of a question, the FCC also saw fit to ask SpaceX for “any updates regarding the expected timing of launches for the Gen2 system.” The timing of Starlink Gen2 launches is obviously unequivocally contingent upon FCC approval more than 19 months after SpaceX first submitted an application for said approval. Nonetheless, SpaceX politely answered the question, revealing that it had “informed Commission staff before filing its Amendment” in August 2021 that it “plans to have Gen2 satellites prepared for launch as soon as March 2022” and “still intends to begin launching [Starlink Gen2 satellites] as early as March 2022.”
Many readers and industry followers interpreted this as an implicit claim that Starship will be ready to launch Starlink Gen2 satellites as early as March 2022 – just another of the company’s detached-from-reality schedule estimates, in other words. That’s simply not the case, though. While SpaceX does confirm that it’s settling on a Starlink Gen2 configuration that will explicitly depend upon Starship for the full 29,988-satellite constellation’s timely, cost-effective deployment, FCC deployment and operations licensing are almost inherently unconcerned with how the constellation gets into space. For example, the original Gen2 application SpaceX modified last August never mentioned which launch vehicle would be responsible for launching tens of thousands of satellites. So long as the rocket is compliant with FCC regulations and has an active permit for any given launch, which is also the responsibility of a different bureau, the FCC is effectively indifferent about which rockets launch a given constellation.
In other words, while SpaceX has made it clear that Starlink Gen2 Configuration 1 is optimized for Starship, SpaceX will be free to launch Gen2 satellites on any rocket it wants if or when the FCC approves the constellation. Assuming that Starlink Gen2 satellites will still be able to fit inside a 5.2m (17 ft) wide payload fairing, that includes Falcon 9. Further, in early 2018, the FCC allowed SpaceX to launch the first two Starlink satellite prototypes before it had issued the company a license for the full constellation, making it clear that with the right paperwork, prospective constellation operators can launch and test prototype satellites before their full constellations are approved.
This is to say that there is nothing theoretically preventing SpaceX from again pursuing permission to launch a few prototype Starlink satellites (this time Gen2) before the FCC has finished reviewing and approving the whole constellation. In fact, anything less would actually be surprising and unusual for the company. When SpaceX says in January 2022 that it plans to have Gen2 satellites ready for launch by March 2022, it’s thus not hard to believe that that’s the truth. Perhaps it will take a month or two longer than planned to complete the prototypes, secure temporary FCC approval, and build and license a new E-band ground station, but it’s still believable that SpaceX will be ready and able to launch the first few Starlink Gen2 satellites on Falcon 9 within the next several months. Above all else, unless SpaceX has explicitly designed Starlink Gen2 satellites such that they no longer fit inside a Falcon fairing, nothing is forcing SpaceX to wait for Starship if Gen2 prototypes are ready to launch before the next-gen rocket.
Given that Starship will have to wait until at least March 2022 for its first orbital test flight after FAA review delays, it’s obviously implausible that the rocket will be ready to launch Starlink prototypes by then. Starship S20 – currently said by CEO Elon Musk to be the first space-bound prototype – doesn’t even have a payload bay. Unless SpaceX wants to wait several more months after that to kick off the flight-testing phase of Starlink Gen2 development, it’s likely that the first few satellites will launch on Falcon 9 – either alongside routine Starlink V1.5 launches or on their own.
Elon Musk
Tesla announces crazy new Full Self-Driving milestone
The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.
Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.
The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.
On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.
Tesla owners have now driven >8 billion miles on FSD Supervisedhttps://t.co/0d66ihRQTa pic.twitter.com/TXz9DqOQ8q
— Tesla (@Tesla) February 18, 2026
The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.
The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.
Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.
Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.
This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.
The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.
News
Tesla Cybercab production begins: The end of car ownership as we know it?
While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.
The first Tesla Cybercab rolled off of production lines at Gigafactory Texas yesterday, and it is more than just a simple manufacturing milestone for the company — it’s the opening salvo in a profound economic transformation.
Priced at under $30,000 with volume production slated for April, the steering-wheel-free, pedal-less Robotaxi-geared vehicle promises to make personal car ownership optional for many, slashing transportation costs to as little as $0.20 per mile through shared fleets and high utilization.

Credit: wudapig/Reddit< /a>
While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.
Let’s examine the positives and negatives of what the Cybercab could mean for passenger transportation and vehicle ownership as we know it.
The Promise – A Radical Shift in Transportation Economics
Tesla has geared every portion of the Cybercab to be cheaper and more efficient. Even its design — a compact, two-seater, optimized for fleets and ride-sharing, the development of inductive charging, around 300 miles of range on a small battery, half the parts of the Model 3, and revolutionary “unboxed” manufacturing — is all geared toward rapid production.
Operating at a fraction of what today’s rideshare prices are, the Cybercab enables on-demand autonomy for a variety of people in a variety of situations.
Tesla ups Robotaxi fare price to another comical figure with service area expansion
It could also be the way people escape expensive and risky car ownership. Buying a vehicle requires expensive monthly commitments, including insurance and a payment if financed. It also immediately depreciates.
However, Cybercab could unlock potential profitability for owning a car by adding it to the Robotaxi network, enabling passive income. Cities could have parking lots repurposed into parks or housing, and emissions would drop as shared electric vehicles would outnumber gas cars (in time).
The first step of Tesla’s massive production efforts for the Cybercab could lead to millions of units annually, turning transportation into a utility like electricity — always available, cheap, and safe.
The Dark Side – Job Losses and Industry Upheaval
With Robotaxi and Cybercab, they present the same negatives as broadening AI — there’s a direct threat to the economy.
Uber, Lyft, and traditional taxis will rely on human drivers. Robotaxi will eliminate that labor cost, potentially displacing millions of jobs globally. In the U.S. alone, ride-hailing accounts for billions of miles of travel each year.
There are also potential ripple effects, as suppliers, mechanics, insurance adjusters, and even public transit could see reduced demand as shared autonomy grows. Past automation waves show job creation lags behind destruction, especially for lower-skilled workers.
Gig workers, like those who are seeking flexible income, face the brunt of this. Displaced drivers may struggle to retrain amid broader AI job shifts, as 2025 estimates bring between 50,000 and 300,000 layoffs tied to artificial intelligence.
It could also bring major changes to the overall competitive landscape. While Waymo and Uber have partnered, Tesla’s scale and lower costs could trigger a price war, squeezing incumbents and accelerating consolidation.
Balancing Act – Who Wins and Who Loses
There are two sides to this story, as there are with every other one.
The winners are consumers, Tesla investors, cities, and the environment. Consumers will see lower costs and safer mobility, while potentially alleviating themselves of awkward small talk in ride-sharing applications, a bigger complaint than one might think.
Elon Musk confirms Tesla Cybercab pricing and consumer release date
Tesla investors will be obvious winners, as the launch of self-driving rideshare programs on the company’s behalf will likely swell the company’s valuation and increase its share price.
Cities will have less traffic and parking needs, giving more room for housing or retail needs. Meanwhile, the environment will benefit from fewer tailpipes and more efficient fleets.
A Call for Thoughtful Transition
The Cybercab’s production debut forces us to weigh innovation against equity.
If Tesla delivers on its timeline and autonomy proves reliable, it could herald an era of abundant, affordable mobility that redefines urban life. But without proactive policies — retraining, safety nets, phased deployment — this revolution risks widening inequality and leaving millions behind.
Elon on the MKBHD bet, stating “Yes” to the question of whether Tesla would sell a Cybercab for $30k or less to a customer before 2027 https://t.co/sfTwSDXLUN
— TESLARATI (@Teslarati) February 17, 2026
The real question isn’t whether the Cybercab will disrupt — it’s already starting — it’s whether society is prepared for the economic earthquake it unleashes.
News
Tesla Model 3 wins Edmunds’ Best EV of 2026 award
The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”
The Tesla Model 3 has won Edmunds‘ Top Rated Electric Car of 2026 award, beating out several other highly-rated and exceptional EV offerings from various manufacturers.
This is the second consecutive year the Model 3 beat out other cars like the Model Y, Audi A6 Sportback E-tron, and the BMW i5.
The car, which is Tesla’s second-best-selling vehicle behind the popular Model Y crossover, has been in the company’s lineup for nearly a decade. It offers essentially everything consumers could want from an EV, including range, a quality interior, performance, and Tesla’s Full Self-Driving suite, which is one of the best in the world.
The Tesla Model 3 has won Edmunds Top EV of 2026:
“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is… pic.twitter.com/ARFh24nnDX
— TESLARATI (@Teslarati) February 18, 2026
The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”
In its Top Rated EVs piece on its website, it said about the Model 3:
“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is impressively well-rounded thanks to improved build quality, ride comfort, and a compelling combination of efficiency, performance, and value.”
Additionally, Jonathan Elfalan, Edmunds’ Director of Vehicle Testing, said:
“The Model 3 offers just about the perfect combination of everything — speed, range, comfort, space, tech, accessibility, and convenience. It’s a no-brainer if you want a sensible EV.”
The Model 3 is the perfect balance of performance and practicality. With the numerous advantages that an EV offers, the Model 3 also comes in at an affordable $36,990 for its Rear-Wheel Drive trim level.