Connect with us

News

SpaceX Starship stacked with ballast for hop test debut

Starship SN4 has been outfitted with a ballast weight to enable its inaugural flight test. (NASASpaceflight - bocachicagal)

Published

on

SpaceX has installed a custom-built ballast atop its fourth full-scale Starship prototype, a sign that the company is rapidly approaching the ship’s first Starhopper-style hop test.

Although CEO Elon Musk officially “redirected” SpaceX’s resources away from Starship’s first flight and towards Crew Dragon’s NASA astronaut launch debut, the company continues to work around the clock to ready Starship SN4 for the program’s biggest test yet. Designed with the goal of creating a fully-reusable, ultra-capable launch vehicle that is unprecedentedly affordable, SpaceX’s Starship spacecraft and Super Heavy booster have made impressive progress over the last 12 or so months.

In July and August 2019, Starhopper – a low-fidelity testbed and proof of concept – successfully performed two untethered hop tests, ultimately flying more than 150m (~500 ft) above ground before safely touching down. Three months later, the first full-scale Starship prototype was destroyed almost immediately after its first pressure test began, a failure that lead SpaceX to expedite factory upgrades. Just six months later, SpaceX has completed multiple successful tests, including pressure tests that pushed beyond the pressures needed for safe human spaceflight, several full wet dress rehearsals (WDRs) with live propellant, and three Raptor engine static fires. In fewer words, Starship is ready for its next big test: flight.

SpaceX technicians prepare to complete a jerryrigged ballast weight for Starship SN4. (NASASpaceflight – bocachicagal)

However, Starship SN4 currently has just one Raptor engine installed and will remain in that configuration for its inaugural hop, expected to reach a maximum altitude identical to Starhopper (150m/500ft). The odd configuration means that the rocket will be propelled by asymmetric thrust, as Starship’s ‘thrust puck’ engine section is designed to hold three Raptor engines in a triangular formation. Raptor is capable of producing up to 200 metric tons (~440,000 lbf) of thrust with an unclear level of throttle control (likely mediocre according to comments made by Elon Musk).

Impressively, although it might seem reasonable to assume that Starship SN4 is about as heavy as the ~120 ton Starhopper, the clear and present need to install substantial ballast suggests otherwise. Combined with comments made during SN4’s April 2020 transport from factory to launch site, it appears that even SpaceX’s early Starship engine sections weigh just 50-60 metric tons (110,000-125,000 lb) empty. That weight doesn’t account for the flaps, heat shield, nose section, or many other heavy components that orbital Starships will eventually need but is still impressive.

Starship SN4 was transported to the launch pad on April 23rd. (NASASpaceflight – bocachicagal)
On May 27th, SpaceX installed a massive ballast weight on top of the Starship prototype. (NASASpaceflight – bocachicagal)

That impressive weight reduction, Raptor’s inability to safely throttle low, and the FAA’s lack of interest in dozens (up to hundreds) of tons of explosive propellant flying above or around populated areas poses its own challenges for the first full-scale Starship flight. The addition of ballast helpfully solves (or at least alleviates) several of those issues. Notably, ballast can prevent SpaceX from having to fuel Starship SN4 with dozens of extra tons of explosive propellant to counteract the high thrust of its single engine and permit a safe launch and landing.

At the same time, if Starship SN4’s wet weight is reduced by carrying less propellant during its first flight, that actually exacerbates the problem of Raptor’s small throttle range, as a lighter ship would be much harder to manage as the engine rapidly burns propellant and thus loses mass. With ballast, Raptor won’t have to throttle as low as it would otherwise have to to ensure a gentle rate of deceleration. Built out of sheet steel and two spare rolls of the same steel used to form Starship rings, Starship SN4’s new ballast likely increases its dry mass by some 50% or more (25+ metric tons).

Advertisement
-->
(NASASpaceflight – bocachicagal)
Starship SN4’s solid steel ballast. (NASASpaceflight – bocachicagal)

Pending Crew Dragon’s inaugural astronaut launch, now scheduled no earlier than 3:22 pm EDT (19:22 UTC), May 30th after weather delayed the first May 27th launch attempt, Starship SN4 has no testing periods on the calendar at the moment. Speaking around May 23rd, Musk stated that the ship was likely at least a “few weeks” away from its flight debut, suggesting that the ship will perform another static fire test to prepare for its first hop as early as next week. Stay tuned for updates as SpaceX’s works towards two very exciting Crew Dragon and Starship milestones.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla hints at Starlink integration with recent patent

“By employing polymer blends, some examples enable RF transmission from all the modules to satellites and other communication devices both inside and outside the vehicle.”

Published

on

Credit: Grok

Tesla hinted at a potential Starlink internet terminal integration within its vehicles in a recent patent, which describes a vehicle roof assembly with integrated radio frequency (RF) transparency.

The patent, which is Pub. No U.S. 2025/0368267 describes a new vehicle roof that is made of RF-transparent polymer materials, allowing and “facilitating clear communication with external devices and satellites.”

Tesla believes that a new vehicle roof design, comprised of different materials than the standard metallic or glass elements used in cars today, would allow the company to integrate modern vehicular technologies, “particularly those requiring radio frequency transmission and reception.

Instead of glass or metallic materials, Tesla says vehicles may benefit from high-strength polymer blends, such as Polycarbonate, Acrylonitrile Butadiene Styrene, or Acrylonitrile Styrene Acrylate.

These materials still provide ideal strength metrics for crashworthiness, stiffness for noise, vibration, and harshness control, and are compliant with head impact regulations.

They would also enable better performance with modern technologies, like internet terminals, which need an uninterrupted signal to satellites for maximum reception. Tesla writes in the patent:

“By employing polymer blends, some examples enable RF transmission from all the modules to satellites and other communication devices both inside and outside the vehicle.”

One of the challenges Tesla seems to be aware of with this type of roof design is the fact that it will still have to enable safety and keep that at the forefront of the design. As you can see in the illustration above, Tesla plans to use four layers to increase safety and rigidity, while also combating noise and vibration.

It notes in the patent that disclosed examples still meet the safety requirements outlined in the Federal Motor Vehicle Safety Standards (FMVSS).

Starlink integrated directly into Tesla vehicles would be a considerable advantage for owners. It would come with a handful of distinct advantages.

Initially, the inclusion of Starlink would completely eliminate cellular dead zones, something that is an issue, especially in rural areas. Starlink would provide connectivity in these remote regions and would ensure uninterrupted service during road trips and off-grid adventures.

It could also be a critical addition for Robotaxi, as it is crucial to have solid and reliable connectivity for remote monitoring and fleet management.

Starlink’s growing constellation, thanks to SpaceX’s routine and frequent launch schedule, will provide secure, stable, and reliable internet connectivity for Tesla vehicles.

SpaceX reaches incredible milestone with Starlink program

Although many owners have already mounted Starlink Mini dishes under their glass roofs for a similar experience, it may be integrated directly into Teslas in the coming years, either as an upgrade or a standard feature.

Continue Reading

News

Tesla supplements Holiday Update by sneaking in new Full Self-Driving version

It seems Tesla was waiting for the Hardware 4 rollout, as it wanted to also deploy a new Full Self-Driving version to those owners, as it appeared in the release notes for the Holiday Update last night.

Published

on

Credit: Tesla

Tesla has surprised some owners by sneaking in a new Full Self-Driving version with the wide release of the Holiday Update, which started rolling out to Hardware 4 owners on Friday night.

Tesla has issued a controlled and very slow release pattern with the Holiday Update, which rolls out with Software Version 2025.44.25.5.

For the past two weeks, as it has rolled out to Hardware 3 and older Tesla owners, the company has kept its deployment of the new Software Version relatively controlled.

It seems Tesla was waiting for the Hardware 4 rollout, as it wanted to also deploy a new Full Self-Driving version to those owners, as it appeared in the release notes for the Holiday Update last night.

Tesla Full Self-Driving v14.2.1.25 made its first appearance last night to Hardware 4 owners who are members of the Early Access Program (EAP). It appears to be a slight refinement from FSD v14.2.1, which has been out for a couple of weeks.

Many owners welcome the new FSD version, us included, because we’ve been less than impressed with v14.2.1. We have experienced some minor regressions with v14.2.1, especially with Speed Limit recognition, Speed Profile tinkering, and parking performance.

As it stands, Full Self-Driving is still particularly impressive, but Tesla is evidently having an issue with some of the adjustments, as it is still refining some of the performance aspects of the suite. This is expected and normal with some updates, as not all of them are an improvement in all areas; we routinely see some things backtrack every once in a while.

This new FSD version is likely to take care of those things, but it also includes all of the awesome Holiday Update features, which include:

  • Grok with Navigation Commands (Beta) – Grok will now add and edit destinations.
  • Tesla Photobooth – Take pictures inside your car using the cabin-facing camera
  • Dog Mode Live Activity – Check on your four-legged friend on your phone through periodic snapshots taken of the cabin
  • Dashcam Viewer Update – Includes new metrics, like steering wheel angle, speed, and more
  • Santa Mode – New graphics, trees, and a lock chime
  • Light Show Update – Addition of Jingle Rush light show
  • Custom Wraps and License Plates – Colorizer now allows you to customize your vehicle even further, with custom patterns, license plates, and tint
  • Navigation Improvements – Easier layout and setup
  • Supercharger Site Map – Starting at 18 pilot locations, a 3D view of the Supercharger you’re visiting will be available
  • Automatic Carpool Lane Routing – Navigation will utilize carpool lanes if enabled
  • Phone Left Behind Chime – Your car will now tell you if you left a phone inside
  • Charge Limit Per Location – Set a charge limit for each location
  • ISS Docking Simulator –  New game
  • Additional Improvements – Turn off wireless charging pad, Spotify improvements, Rainbow Rave Cave, Lock Sound TRON addition

Tesla also added two other things that were undocumented, like Charging Passport and information on USB drive storage to help with Dashcam.

Continue Reading

Cybertruck

Tesla updates Cybertruck owners about key Powershare feature

Published

on

Credit: Tesla

Tesla is updating Cybertruck owners on its timeline of a massive feature that has yet to ship: Powershare with Powerwall.

Powershare is a bidirectional charging feature exclusive to Cybertruck, which allows the vehicle’s battery to act as a portable power source for homes, appliances, tools, other EVs, and more. It was announced in late 2023 as part of Tesla’s push into vehicle-to-everything energy sharing, and acting as a giant portable charger is the main advantage, as it can provide backup power during outages.

Cybertruck’s Powershare system supports both vehicle-to-load (V2L) and vehicle-to-home (V2H), making it flexible and well-rounded for a variety of applications.

However, even though the feature was promised with Cybertruck, it has yet to be shipped to vehicles. Tesla communicated with owners through email recently regarding Powershare with Powerwall, which essentially has the pickup act as an extended battery.

Powerwall discharge would be prioritized before tapping into the truck’s larger pack.

However, Tesla is still working on getting the feature out to owners, an email said:

“We’re writing to let you know that the Powershare with Powerwall feature is still in development and is now scheduled for release in mid-2026. 

This new release date gives us additional time to design and test this feature, ensuring its ability to communicate and optimize energy sharing between your vehicle and many configurations and generations of Powerwall. We are also using this time to develop additional Powershare features that will help us continue to accelerate the world’s transition to sustainable energy.”

Owners have expressed some real disappointment in Tesla’s continuous delays in releasing the feature, as it was expected to be released by late 2024, but now has been pushed back several times to mid-2026, according to the email.

Foundation Series Cybertruck buyers paid extra, expecting the feature to be rolled out with their vehicle upon pickup.

Cybertruck’s Lead Engineer, Wes Morrill, even commented on the holdup:

He said that “it turned out to be much harder than anticipated to make powershare work seamlessly with existing Powerwalls through existing wall connectors. Two grid-forming devices need to negotiate who will form and who will follow, depending on the state of charge of each, and they need to do this without a network and through multiple generations of hardware, and test and validate this process through rigorous certifications to ensure grid safety.”

It’s nice to see the transparency, but it is justified for some Cybertruck owners to feel like they’ve been bait-and-switched.

Continue Reading