Connect with us

News

SpaceX’s Starship briefly becomes the most powerful active rocket in the world

SpaceX's most powerful rocket test - ever. (NASASpaceflight Starbase Live)

Published

on

A SpaceX Starship booster has successfully fired up 14 of its 33 Raptor engines, likely becoming the most powerful active rocket in the world.

Throughout the history of spaceflight, only three or four other rockets have produced as much or more thrust than Super Heavy Booster 7 (B7) could have theoretically produced on November 14th. But the Soviet Energia and N1 rockets and the US Saturn V and Space Shuttle were all retired one or several decades ago. Only SpaceX’s own Falcon Heavy rocket, fifth on the bracket and capable of producing up to 2325 tons (5.13 million pounds) of thrust at sea level, is still operational and comes close.

Powered by 33 upgraded Raptor 2 engines that SpaceX says can produce up to 230 tons (~510,000 lbf) each, Super Heavy could have produced up to 3220 tons (7.1 million pounds) of thrust when it ignited 14 of its engines earlier today. That likely means that Starship is now the fourth most powerful rocket ever tested, slotting in above NASA’s Space Shuttle but below the Soviet Energia. And even if all 14 engines never throttled above 73%, SpaceX’s Starship booster likely still produced more thrust than any other active rocket in the world, beating Falcon Heavy. But if NASA has its way, Starship could hold that title for less than 36 hours.

As early as 1:04 am EDT (06:04 UTC) on November 16th, a little over 35 hours after SpaceX’s record-breaking Starship static fire, NASA will attempt to launch its massive Space Launch System (SLS) rocket for the third time since late August. At the explicit request of Congress, which wanted to preserve Shuttle jobs after the end of the program in 2011, SLS essentially shuffles around Space Shuttle parts and replaces the reusable orbiter with a fully-expendable rocket. The Solid Rocket Boosters (SRBs) have been extended and uprated, and the orange External Tank has been stretched and turned into a liquid rocket booster affixed with four RS-25 engines to the Shuttle’s three.

Advertisement

If things go according to plan, those changes mean that SLS rocket will produce up to 3990 tons (8.8 million pounds) of thrust when it lifts off for the first time, overtaking Super Heavy B7 but also making it the second most powerful launch vehicle in history after the Soviet N1. N1 never succeeded, however, so SLS could become the most powerful rocket ever to reach orbit if its first launch is successful.

But just as SLS appears poised to almost immediately unseat Starship’s position as the most powerful active rocket in the world, Starship is poised to beat SLS to become the most powerful rocket ever flown – successfully or not – when it attempts its first orbital launch either next month or early next year. With all 33 Raptors at full throttle, Starship can produce almost 7600 tons (16.7 million pounds) of thrust at liftoff, beating the previous record-holder – the Soviet N1 rocket – by nearly 60%.

Even if that first launch attempt is unsuccessful, SpaceX appears to be preparing for several more rapid-fire launches that will continue until success is achieved, beating SLS’ other (potential) record. SpaceX has demonstrated that ability once before with Starship when it completed five flights of five different prototypes in less than six months. As a result, it’s likely that by the time SLS launches a second time in the mid-2020s, it will be the third most powerful rocket, second to N1 and Starship.

That slightly awkward upset should be lessened by the fact that Starship and SLS are, for the time being, both integral parts of NASA’s Artemis Program. To return astronauts to the Moon for the first time since 1972, SLS and its Orion spacecraft will transport NASA astronauts to lunar orbit, where they’ll board a Starship-derived Moon lander. Starship will then land those astronauts on the lunar surface, support about a week of surface operations, and then return them to lunar orbit, where Orion will transport them back to Earth.

Advertisement

For now, a massive amount of work remains to be done before NASA and SpaceX will be ready to support that crewed Moon landing. But Monday’s Starship static fire and Wednesday’s potential SLS launch both represent significant, tangible steps towards that lofty goal.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla exec pleads for federal framework of autonomy to U.S. Senate Committee

Published

on

Credit: Tesla

Tesla executive Lars Moravy appeared today in front of the U.S. Senate Commerce Committee to highlight the importance of modernizing autonomy standards by establishing a federal framework that would reward innovation and keep the country on pace with foreign rivals.

Moravy, who is Tesla’s Vice President of Vehicle Engineering, strongly advocated for Congress to enact a national framework for autonomous vehicle development and deployment, replacing the current patchwork of state-by-state rules.

These rules have slowed progress and kept companies fighting tooth-and-nail with local legislators to operate self-driving projects in controlled areas.

Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count

Moravy said the new federal framework was essential for the U.S. to “maintain its position in global technological development and grow its advanced manufacturing capabilities.

He also said in a warning to the committee that outdated regulations and approval processes would “inhibit the industry’s ability to innovate,” which could potentially lead to falling behind China.

Being part of the company leading the charge in terms of autonomous vehicle development in the U.S., Moravy highlighted Tesla’s prowess through the development of the Full Self-Driving platform. Tesla vehicles with FSD engaged average 5.1 million miles before a major collision, which outpaces that of the human driver average of roughly 699,000 miles.

Moravy also highlighted the widely cited NHTSA statistic that states that roughly 94 percent of crashes stem from human error, positioning autonomous vehicles as a path to dramatically reduce fatalities and injuries.

Skeptics sometimes point to cybersecurity concerns within self-driving vehicles, which was something that was highlighted during the Senate Commerce Committee hearing, but Moravy said, “No one has ever been able to take over control of our vehicles.”

This level of security is thanks to a core-embedded central layer, which is inaccessible from external connections. Additionally, Tesla utilizes a dual cryptographic signature from two separate individuals, keeping security high.

Moravy also dove into Tesla’s commitment to inclusive mobility by stating, “We are committed with our future products and Robotaxis to provide accessible transportation to everyone.” This has been a major point of optimism for AVs because it could help the disabled, physically incapable, the elderly, and the blind have consistent transportation.

Overall, Moravy’s testimony blended urgency about geopolitical competition, especially China, with concrete safety statistics and a vision of the advantages autonomy could bring for everyone, not only in the U.S., but around the world, as well.

Continue Reading

News

Tesla Model Y lineup expansion signals an uncomfortable reality for consumers

Published

on

Credit: Tesla

Tesla launched a new configuration of the Model Y this week, bringing more complexity to its lineup of the vehicle and adding a new, lower entry point for those who require an All-Wheel-Drive car.

However, the broadening of the Model Y lineup in the United States could signal a somewhat uncomfortable reality for Tesla fans and car buyers, who have been vocal about their desire for a larger, full-size SUV.

Tesla has essentially moved in the opposite direction through its closure of the Model X and its continuing expansion of a vehicle that fits the bill for many, but not all.

Tesla brings closure to Model Y moniker with launch of new trim level

While CEO Elon Musk has said that there is the potential for the Model Y L, a longer wheelbase configuration of the vehicle, to enter the U.S. market late this year, it is not a guarantee.

Instead, Tesla has prioritized the need to develop vehicles and trim levels that cater to the future rollout of the Robotaxi ride-hailing service and a fully autonomous future.

But the company could be missing out on a massive opportunity, as SUVs are a widely popular body style in the U.S., especially for families, as the tighter confines of compact SUVs do not support the needs of a large family.

Although there are other companies out there that manufacture this body style, many are interested in sticking with Tesla because of the excellent self-driving platform, expansive charging infrastructure, and software performance the vehicles offer.

Additionally, the lack of variety from an aesthetic and feature standpoint has caused a bit of monotony throughout the Model Y lineup. Although Premium options are available, those three configurations only differ in terms of range and performance, at least for the most part, and the differences are not substantial.

Minor Expansions of the Model Y Fail to Address Family Needs for Space

Offering similar trim levels with slight differences to cater to each consumer’s needs is important. However, these vehicles keep a constant: cargo space and seating capacity.

Larger families need something that would compete with vehicles like the Chevrolet Tahoe, Ford Expedition, or Cadillac Escalade, and while the Model X was its largest offering, that is going away.

Tesla could fix this issue partially with the rollout of the Model Y L in the U.S., but only if it plans to continue offering various Model Y vehicles and expanding on its offerings with that car specifically. There have been hints toward a Cyber-inspired SUV in the past, but those hints do not seem to be a drastic focus of the company, given its autonomy mission.

Tesla appears to be mulling a Cyber SUV design

Model Y Expansion Doesn’t Boost Performance, Value, or Space

You can throw all the different badges, powertrains, and range ratings on the same vehicle, it does not mean it’s going to sell better. The Model Y was already the best-selling vehicle in the world on several occasions. Adding more configurations seems to be milking it.

The true need of people, especially now that the Model X is going away, is going to be space. What vehicle fits the bill of a growing family, or one that has already outgrown the Model Y?

Not Expanding the Lineup with a New Vehicle Could Be a Missed Opportunity

The U.S. is the world’s largest market for three-row SUVs, yet Tesla’s focus on tweaking the existing Model Y ignores this. This could potentially result in the Osborne Effect, as sales of current models without capturing new customers who need more seating and versatility.

Expansions of the current Model Y offerings risk adding production complexity without addressing core demands, and given that the Model Y L is already being produced in China, it seems like it would be a reasonable decision to build a similar line in Texas.

Listening to consumers means introducing either the Model Y L here, or bringing a new, modern design to the lineup in the form of a full-size SUV.

Continue Reading

Elon Musk

Elon Musk reiterates Tesla Optimus’ most sci-fi potential yet

Musk shared his comments in a series of posts on social media platform X.

Published

on

Credit: Tesla/YouTube

Elon Musk recently reiterated one of the most ambitious forecasts for Tesla’s humanoid robot, Optimus, stating it could become the first real-world example of a Von Neumann machine. He also noted once more that Optimus would be Tesla’s biggest product.

Musk shared his comments in a series of posts on social media platform X.

Optimus as a von Neumann machine

In response to a post on X that pondered on sci-fi timelines becoming real, Musk wrote that “Optimus will be the first Von Neumann machine, capable of building civilization by itself on any viable planet.” In a separate post, Musk wrote that Optimus will be Tesla’s “biggest product ever,” a phrase he has used in the past to describe the humanoid robot’s importance to the electric vehicle maker.

A Von Neumann machine is a class of theoretical self-replicating systems originally proposed in the mid-20th century by the mathematician John von Neumann. In his concept, von Neumann described machines that could travel to other worlds, use local materials to create copies of themselves, and carry out large-scale tasks without outside intervention. 

Advertisement

Elon Musk’s broader plans

Considering Musk’s comments, it appears that Optimus would eventually be capable of performing complex work autonomously in environments beyond Earth. If Optimus could achieve such a feat, it could very well unlock humanity’s capability to explore locations beyond Earth. The idea of space exploration becomes more than feasible.

Elon Musk has discussed space-based AI compute, large-scale robotic production, and the role of SpaceX’s Starship in transporting hardware and materials to other planets. While Musk did not detail how Optimus would fit with SpaceX’s exploration activities, his Von Neumann machine comments suggest he is looking at Tesla’s robotics as part of a potential interplanetary ecosystem. 

Advertisement
Continue Reading