Connect with us

News

SpaceX Starship factory overflowing with new and flight-proven rockets

SpaceX has at least six separate Starship prototypes in work at its Boca Chica, Texas rocket factory. (NASASpaceflight - bocachicagal)

Published

on

After a relatively relaxed period of production and testing, SpaceX’s South Texas Starship factory is practically overflowing with new and flight-proven ships as the company prepares for the rocket’s next major tests.

Even before the one-off Starship Mk1 prototype failed a pressure test late last year, SpaceX was in the process of upgrading its Boca Chica production facilities and refining the ship’s design and manufacturing processes. Starship SN1, the first prototype built as part of that upgrade, rolled to the launch pad on February 25th, 2020, followed by Starship SN2 (turned into a test tank) just a week or so later. Starship SN3 and SN4 would both follow in early and late April, ultimately ending with the latter prototype’s spectacularly violent demise in late May.

Over the remaining three or so months, the pace of testing has slowed a bit as SpaceX’s Starship development program enters the full-scale flight testing phase. Starship SN5 began testing on July 1st, followed by SN6 around six weeks later. Both prototypes successfully hopped just 30 days apart. Now, although SpaceX still plans to hop SN5 a second time and may hop SN6 twice, too, the Starship program’s focus has shifted to high-altitude, high-velocity flight tests and the adoption of a new steel alloy.

Presumably in anticipation of a learning curve as that new steel alloy begins to be tested at full-scale for the first times, SpaceX is churning out Starship prototypes at an unprecedented pace. Intriguingly, that production ramp is hinged upon the assumption that a 304L-class steel alloy (compared to the 301 stainless steel used to build SN1 through SN6) will be as good or better than 301 steel in every significant way.

Currently, that assumption isn’t entirely baseless but is still built upon the success of Starship SN7, SpaceX’s first 304L test tank. SpaceX never confirmed its results but it’s believed that that test tank – more of a material demonstrator than an actual structural Starship prototype – surpassed all previous pressure records before it burst in June.

Advertisement
-->
Starship test tank SN7, June 15th. (NASASpaceflight – bocachicagal
SN7 is believed to have broken pressure records before it burst on June 23rd. (NASASpaceflight – bocachicagal)
A second 304L test tank – Starship SN7.1 – rolled to the test site on September 7th. (NASASpaceflight – bocachicagal)

Given that SN7 performed quite well, it’s at least a bit less surprising that SpaceX is hinging months of work and at least four full-scale Starship prototypes on an otherwise unproven steel alloy. The next big test for 304L Starships will be a second test tank known as SN7.1. Rolled to the test site on September 7th, essentially as soon as Starship SN6 was safed and returned to the factory after its hop debut, SN7.1 is significantly more complex than its sibling and will test a ~304L Raptor mount (thrust puck) and skirt section. The forces and general conditions those new parts will be subjected to are substantially different than most of what SN7 was subjected to, meaning that there is a chance that 304L steel is less optimal in different scenarios.

With any luck, SN7.1’s test campaign – scheduled to begin as early as 9pm CDT (UTC-5), September 10th (today) – will be a flawless success, proving that SpaceX’s new steel alloy is universally superior to 301 for Starship-related applications. If that’s the case, Starship SN8 – the first full new-alloy prototype – will likely be fully outfitted with a nosecone and header tanks before beginning acceptance testing.

SN8’s tank section (center) was fully stacked by late August. (NASASpaceflight – bocachicagal)
Alongside Starship tanks, SpaceX’s Boca Chica team has also been extensively prototyping upgraded Starship nose sections. Starship Mk1’s roughshod nose is visible for comparison on the far left. (NASASpaceflight – Nomadd)

Eventually, if SN7.1 aces its tests and SN8 performs well during preflight preparations, Starship SN8 could become the first prototype to launch with a full nose, header tanks, and flaps, as well as the first to fly with three Raptor engines. If Starship SN8 fails for any reason or is damaged during testing, though, it appears that SpaceX will have no shortage of ships built out of the same new steel alloy to choose from.

In just the last ten days, labeled parts and rings for Starships SN9, SN10, and SN11 have all been spotted, implying that SpaceX is concurrently building at least four new Starships. Notably, both Starships SN9 and SN11 already appear to have some of the studs needed for heat shield tile installation affixed to sections of their steel hulls. Based on the sheer number of steel ring stacks spotted over the last week, it’s also safe to assume that SN9’s tank section (and possibly SN10’s, too) is largely prefabricated.

Starship SN9’s common dome was sleeved with steel rings around August 15th. (NASASpaceflight – bocachicagal)
SN9’s aft dome and thrust puck was sleeved with steel rings around September 4th. (NASASpaceflight – bocachicagal)
Starship SN10’s thrust puck was delivered from Hawthorne, California on September 3rd. (NASASpaceflight – bocachicagal)
SN10’s forward dome was sleeved on September 8th. (NASASpaceflight – bocachicagal)
The first labeled Starship SN11 rings were spotted on September 9th. (NASASpaceflight – bocachicagal)
Two reinforced five-ring stacks will likely support nosecones on two new Starships. (NASASpaceflight – bocachicagal)

Assuming two of the in-work nosecones are ultimately meant for flight, SpaceX may already have enough hardware on hand to fully assemble two Starships (presumably SN8 and SN9) – including nosecones, header tanks, nose rings, and flaps. It’s safe to say that if SN7.1 achieves its goals, preparations for the first triple Raptor hop, 20 km (~12 mi) test flight, and skydiver-style landing attempt could come together incredibly quickly.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla finishes its biggest Supercharger ever with 168 stalls

Published

on

Credit: Tesla Charging | X

Tesla has finished construction at its biggest Supercharger ever in Lost Hills, California, and all 168 stalls are officially open as of today.

After several years of development, the company has officially announced that the Lost Hills Supercharger, known as Project Oasis, is officially open with 168 stalls active and available to drivers.

Tesla announced the completion of the Lost Hills Supercharger on Tuesday, showing off the site, which is powered by 10 Megapack batteries for storage and is completely independent of the grid, as it has 11 MW of solar panels bringing energy to the massive Battery Energy Storage System (BESS).

This is the largest Supercharger in the world and opens just in time for the Thanksgiving holiday, which is the most-traveled weekend of the year in the United States.

Spanning across 30 acres, it was partially opened back in July 2025 as Tesla opened just 84 of the 168 stalls at the site. However, Tesla finished certifying the site recently, which enabled the Supercharger to open up completely.

The site generates roughly 20 GWh of energy annually, which is enough to power roughly 1,700 homes. The launch of this site specifically is massive for the company as it plans to launch more Superchargers in more rural areas, making charging more available for cross-country rides that require stops in more remote regions of the United States.

This is perhaps the only weak point of Tesla’s massive charging infrastructure.

It has some features that are also extremely welcome for some owners, including things like pull-through stalls for those who tow, an idea that was extremely popular following the launch of the Cybertruck.

Tesla has over 70,000 active Superchargers across the world. The company has also made efforts to create unique experiences at some of the stops, most notably with its Tesla Diner, located on Santa Monica Boulevard in Los Angeles.

That Supercharger has two massive drive-in movie theaters and will soon transition to a full-service restaurant following the departure of its executive chef, Eric Greenspan.

Continue Reading

Elon Musk

Elon Musk proposes Grok 5 vs world’s best League of Legends team match

Musk’s proposal has received positive reception from professional players and Riot Games alike.

Published

on

UK Government, CC BY 2.0 , via Wikimedia Commons

Elon Musk has proposed a high-profile gaming challenge for xAI’s upcoming Grok 5. As per Musk, it would be interesting to see if the large language model could beat the world’ best human League of Legends team with specific constraints.

Musk’s proposal has received positive reception from professional players and Riot Games alike, suggesting that the exciting exhibition match might indeed happen. 

Musk outlines restrictions for Grok

In his post on X, Musk detailed constraints to keep the match competitive, including limiting Grok to human-level reaction times, human-speed clicking, and viewing the game only through a camera feed with standard 20/20 vision. The idea quickly circulated across the esports community, drawing commentary from former pros and AI researchers, as noted in a Dexerto report.

Former League pro Eugene “Pobelter” Park expressed enthusiasm, offering to help Musk’s team and noting the unique comparison to past AI-versus-human breakthroughs, such as OpenAI’s Dota 2 bots. AI researcher Oriol Vinyals, who previously reached Grandmaster rank in StarCraft, suggested testing Grok in RTS gameplay as well. 

Musk welcomed the idea, even responding positively to Vinyals’ comment that it would be nice to see Optimus operate the mouse and keyboard.

Advertisement
-->

Pros debate Grok’s chances, T1 and Riot show interest

Reactions weren’t universally optimistic. Former professional mid-laner Joedat “Voyboy” Esfahani argued that even with Grok’s rapid learning capabilities, League of Legends requires deep synergy, game-state interpretation, and team coordination that may be difficult for AI to master at top competitive levels. Yiliang “Doublelift” Peng was similarly skeptical, publicly stating he doubted Grok could beat T1, or even himself, and jokingly promised to shave his head if Grok managed to win.

T1, however, embraced the proposal, responding with a GIF of Faker and the message “We are ready,” signaling their willingness to participate. Riot Games itself also reacted, with co-founder Marc Merrill replying to Musk with “let’s discuss.” Needless to say, it appears that Riot Games in onboard with the idea.

Though no match has been confirmed, interest from players, teams, and Riot suggests the concept could materialize into a landmark AI-versus-human matchup, potentially becoming one of the most viewed League of Legends events in history. The fact that Grok 5 will be constrained to human limits would definitely add an interesting dimension to the matchup, as it could truly demonstrate how human-like the large language model could be like in real-time scenarios.

Tesla has passed a key milestone, and it was one that CEO Elon Musk initially mentioned more than nine years ago when he published Master Plan, Part Deux. 

As per Tesla China in a post on its official Weibo account, the company’s Autopilot system has accumulated over 10 billion kilometers of real-world driving experience.

Tesla China’s subtle, but huge announcement

In its Weibo post, Tesla China announced that the company’s Autopilot system has accumulated 10 billion kilometers of driving experience. “In this respect, Tesla vehicles equipped with Autopilot technology can be considered to have the world’s most experienced and seasoned driver.” 

Advertisement
-->

Tesla AI’s handle on Weibo also highlighted a key advantage of the company’s self-driving system. “It will never drive under the influence of alcohol, be distracted, or be fatigued,” the team wrote. “We believe that advancements in Autopilot technology will save more lives.”

Tesla China did not clarify exactly what it meant by “Autopilot” in its Weibo post, though the company’s intense focus on FSD over the past years suggests that the term includes miles that were driven by FSD (Beta) and Full Self-Driving (Supervised). Either way, 10 billion cumulative miles of real-world data is something that few, if any, competitors could compete with.

Advertisement

–>

Credit: Tesla China/Weibo

Elon Musk’s 10-billion-km estimate, way back in 2016

When Elon Musk published Master Plan Part Deux, he outlined his vision for the company’s autonomous driving system. At the time, Autopilot was still very new, though Musk was already envisioning how the system could get regulatory approval worldwide. He estimated that worldwide regulatory approval will probably require around 10 billion miles of real-world driving data, which was an impossible-sounding amount at the time. 

“Even once the software is highly refined and far better than the average human driver, there will still be a significant time gap, varying widely by jurisdiction, before true self-driving is approved by regulators. We expect that worldwide regulatory approval will require something on the order of 6 billion miles (10 billion km). Current fleet learning is happening at just over 3 million miles (5 million km) per day,” Musk wrote. 

Advertisement
-->

It’s quite interesting but Tesla is indeed getting regulatory approval for FSD (Supervised) at a steady pace today, at a time when 10 billion miles of data has been achieved. The system has been active in the United States and has since been rolled out to other countries such as Australia, New Zealand, China, and, more recently, South Korea. Expectations are high that Tesla could secure FSD approval in Europe sometime next year as well. 

Continue Reading

News

Elon Musk’s Boring Company reveals Prufrock TBM’s most disruptive feature

As it turns out, the tunneling startup, similar to other Elon Musk-backed ventures, is also dead serious about pursuing reusability.

Published

on

The Boring Company has quietly revealed one of its tunnel boring machines’ (TBMs) most underrated feature. As it turns out, the tunneling startup, similar to other Elon Musk-backed ventures, is also dead serious about pursuing reusability.

Prufrock 5 leaves the factory

The Boring Company is arguably the quietest venture currently backed by Elon Musk, inspiring far fewer headlines than his other, more high-profile companies such as Tesla, SpaceX, and xAI. Still, the Boring Company’s mission is ambitious, as it is a company designed to solve the problem of congestion in cities.

To accomplish this, the Boring Company would need to develop tunnel boring machines that could dig incredibly quickly. To this end, the startup has designed Prufrock, an all-electric TBM that’s designed to eventually be fast enough as an everyday garden snail. Among TBMs, such a speed would be revolutionary. 

The startup has taken a step towards this recently, when The Boring Company posted a photo of Prufrock-5 coming out of its Bastrop, Texas facility. “On a rainy day in Bastrop, Prufrock-5 has left the factory. Will begin tunneling by December 1.  Hoping for a step function increase in speed,” the Boring Company wrote.

Prufrock’s quiet disruption

Interestingly enough, the Boring Company also mentioned a key feature of its Prufrock machines that makes them significantly more sustainable and reusable than conventional TBMs. As per a user on X, standard tunnel boring machines are often left underground at the conclusion of a project because retrieving them is usually more expensive and impractical than abandoning them in the location. 

Advertisement
-->

As per the Boring Company, however, this is not the case for its Prufrock machines, as they are retrieved, upgraded, and deployed again with improvements. “All Prufrocks are reused, usually with upgrades between launches. Prufrock-1 has now dug six tunnels,” the Boring Company wrote in its reply on X.

The Boring Company’s reply is quite exciting as it suggests that the TBMs from the tunneling startup could eventually be as reusable as SpaceX’s boosters. This is on brand for an Elon Musk-backed venture, of course, though the Boring Company’s disruption is a bit more underground. 

Continue Reading