Connect with us

News

SpaceX Starship factory overflowing with new and flight-proven rockets

SpaceX has at least six separate Starship prototypes in work at its Boca Chica, Texas rocket factory. (NASASpaceflight - bocachicagal)

Published

on

After a relatively relaxed period of production and testing, SpaceX’s South Texas Starship factory is practically overflowing with new and flight-proven ships as the company prepares for the rocket’s next major tests.

Even before the one-off Starship Mk1 prototype failed a pressure test late last year, SpaceX was in the process of upgrading its Boca Chica production facilities and refining the ship’s design and manufacturing processes. Starship SN1, the first prototype built as part of that upgrade, rolled to the launch pad on February 25th, 2020, followed by Starship SN2 (turned into a test tank) just a week or so later. Starship SN3 and SN4 would both follow in early and late April, ultimately ending with the latter prototype’s spectacularly violent demise in late May.

Over the remaining three or so months, the pace of testing has slowed a bit as SpaceX’s Starship development program enters the full-scale flight testing phase. Starship SN5 began testing on July 1st, followed by SN6 around six weeks later. Both prototypes successfully hopped just 30 days apart. Now, although SpaceX still plans to hop SN5 a second time and may hop SN6 twice, too, the Starship program’s focus has shifted to high-altitude, high-velocity flight tests and the adoption of a new steel alloy.

Presumably in anticipation of a learning curve as that new steel alloy begins to be tested at full-scale for the first times, SpaceX is churning out Starship prototypes at an unprecedented pace. Intriguingly, that production ramp is hinged upon the assumption that a 304L-class steel alloy (compared to the 301 stainless steel used to build SN1 through SN6) will be as good or better than 301 steel in every significant way.

Currently, that assumption isn’t entirely baseless but is still built upon the success of Starship SN7, SpaceX’s first 304L test tank. SpaceX never confirmed its results but it’s believed that that test tank – more of a material demonstrator than an actual structural Starship prototype – surpassed all previous pressure records before it burst in June.

Advertisement
-->
Starship test tank SN7, June 15th. (NASASpaceflight – bocachicagal
SN7 is believed to have broken pressure records before it burst on June 23rd. (NASASpaceflight – bocachicagal)
A second 304L test tank – Starship SN7.1 – rolled to the test site on September 7th. (NASASpaceflight – bocachicagal)

Given that SN7 performed quite well, it’s at least a bit less surprising that SpaceX is hinging months of work and at least four full-scale Starship prototypes on an otherwise unproven steel alloy. The next big test for 304L Starships will be a second test tank known as SN7.1. Rolled to the test site on September 7th, essentially as soon as Starship SN6 was safed and returned to the factory after its hop debut, SN7.1 is significantly more complex than its sibling and will test a ~304L Raptor mount (thrust puck) and skirt section. The forces and general conditions those new parts will be subjected to are substantially different than most of what SN7 was subjected to, meaning that there is a chance that 304L steel is less optimal in different scenarios.

With any luck, SN7.1’s test campaign – scheduled to begin as early as 9pm CDT (UTC-5), September 10th (today) – will be a flawless success, proving that SpaceX’s new steel alloy is universally superior to 301 for Starship-related applications. If that’s the case, Starship SN8 – the first full new-alloy prototype – will likely be fully outfitted with a nosecone and header tanks before beginning acceptance testing.

SN8’s tank section (center) was fully stacked by late August. (NASASpaceflight – bocachicagal)
Alongside Starship tanks, SpaceX’s Boca Chica team has also been extensively prototyping upgraded Starship nose sections. Starship Mk1’s roughshod nose is visible for comparison on the far left. (NASASpaceflight – Nomadd)

Eventually, if SN7.1 aces its tests and SN8 performs well during preflight preparations, Starship SN8 could become the first prototype to launch with a full nose, header tanks, and flaps, as well as the first to fly with three Raptor engines. If Starship SN8 fails for any reason or is damaged during testing, though, it appears that SpaceX will have no shortage of ships built out of the same new steel alloy to choose from.

In just the last ten days, labeled parts and rings for Starships SN9, SN10, and SN11 have all been spotted, implying that SpaceX is concurrently building at least four new Starships. Notably, both Starships SN9 and SN11 already appear to have some of the studs needed for heat shield tile installation affixed to sections of their steel hulls. Based on the sheer number of steel ring stacks spotted over the last week, it’s also safe to assume that SN9’s tank section (and possibly SN10’s, too) is largely prefabricated.

Starship SN9’s common dome was sleeved with steel rings around August 15th. (NASASpaceflight – bocachicagal)
SN9’s aft dome and thrust puck was sleeved with steel rings around September 4th. (NASASpaceflight – bocachicagal)
Starship SN10’s thrust puck was delivered from Hawthorne, California on September 3rd. (NASASpaceflight – bocachicagal)
SN10’s forward dome was sleeved on September 8th. (NASASpaceflight – bocachicagal)
The first labeled Starship SN11 rings were spotted on September 9th. (NASASpaceflight – bocachicagal)
Two reinforced five-ring stacks will likely support nosecones on two new Starships. (NASASpaceflight – bocachicagal)

Assuming two of the in-work nosecones are ultimately meant for flight, SpaceX may already have enough hardware on hand to fully assemble two Starships (presumably SN8 and SN9) – including nosecones, header tanks, nose rings, and flaps. It’s safe to say that if SN7.1 achieves its goals, preparations for the first triple Raptor hop, 20 km (~12 mi) test flight, and skydiver-style landing attempt could come together incredibly quickly.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

GM CEO Mary Barra says she told Biden to give Tesla and Musk EV credit

“He was crediting me, and I said, ‘Actually, I think a lot of that credit goes to Elon and Tesla…You know me, Andrew. I don’t want to take credit for things.”

Published

on

General Motors CEO Mary Barra said in a new interview on Wednesday that she told President Joe Biden to credit Tesla and its CEO, Elon Musk, for the widespread electric vehicle transition.

She said she told Biden this after the former President credited her and GM for leading EV efforts in the United States.

During an interview at the New York Times Dealbook Summit with Andrew Ross Sorkin, Barra said she told Biden that crediting her was essentially a mistake, and that Musk and Tesla should have been explicitly mentioned (via Business Insider):

“He was crediting me, and I said, ‘Actually, I think a lot of that credit goes to Elon and Tesla…You know me, Andrew. I don’t want to take credit for things.”

Back in 2021, President Biden visited GM’s “Factory Zero” plant in Detroit, which was the centerpiece of the company’s massive transition to EVs. The former President went on to discuss the EV industry, and claimed that GM and Barra were the true leaders who caused the change:

“In the auto industry, Detroit is leading the world in electric vehicles. You know how critical it is? Mary, I remember talking to you way back in January about the need for America to lead in electric vehicles. I can remember your dramatic announcement that by 2035, GM would be 100% electric. You changed the whole story, Mary. You did, Mary. You electrified the entire automotive industry. I’m serious. You led, and it matters.”

People were baffled by the President’s decision to highlight GM and Barra, and not Tesla and Musk, who truly started the transition to EVs. GM, Ford, and many other companies only followed in the footsteps of Tesla after it started to take market share from them.

Elon Musk and Tesla try to save legacy automakers from Déjà vu

Musk would eventually go on to talk about Biden’s words later on:

They have so much power over the White House that they can exclude Tesla from an EV Summit. And, in case the first thing, in case that wasn’t enough, then you have President Biden with Mary Barra at a subsequent event, congratulating Mary for having led the EV revolution.”

In Q4 2021, which was shortly after Biden’s comments, Tesla delivered 300,000 EVs. GM delivered just 26.

Continue Reading

News

Tesla Full Self-Driving shows confident navigation in heavy snow

So far, from what we’ve seen, snow has not been a huge issue for the most recent Full Self-Driving release. It seems to be acting confidently and handling even snow-covered roads with relative ease.

Published

on

Credit: Grok

Tesla Full Self-Driving is getting its first taste of Winter weather for late 2025, as snow is starting to fall all across the United States.

The suite has been vastly improved after Tesla released v14 to many owners with capable hardware, and driving performance, along with overall behavior, has really been something to admire. This is by far the best version of FSD Tesla has ever released, and although there are a handful of regressions with each subsequent release, they are usually cleared up within a week or two.

Tesla is releasing a modified version of FSD v14 for Hardware 3 owners: here’s when

However, adverse weather conditions are something that Tesla will have to confront, as heavy rain, snow, and other interesting situations are bound to occur. In order for the vehicles to be fully autonomous, they will have to go through these scenarios safely and accurately.

One big issue I’ve had, especially in heavy rain, is that the camera vision might be obstructed, which will display messages that certain features’ performance might be degraded.

So far, from what we’ve seen, snow has not been a huge issue for the most recent Full Self-Driving release. It seems to be acting confidently and handling even snow-covered roads with relative ease:

Moving into the winter months, it will be very interesting to see how FSD handles even more concerning conditions, especially with black ice, freezing rain and snow mix, and other things that happen during colder conditions.

We are excited to test it ourselves, but I am waiting for heavy snowfall to make it to Pennsylvania so I can truly push it to the limit.

Continue Reading

News

Tesla hosts Rome Mayor for first Italian FSD Supervised road demo

The event marked the first time an Italian mayor tested the advanced driver-assistance system in person in Rome’s urban streets.

Published

on

Credit: @andst7/X

Tesla definitely seems to be actively engaging European officials on FSD’s capabilities, with the company hosting Rome Mayor Roberto Gualtieri and Mobility Assessor Eugenio Patanè for a hands-on road demonstration. 

The event marked the first time an Italian mayor tested the advanced driver-assistance system in person in Rome’s urban streets. This comes amid Tesla’s push for FSD’s EU regulatory approvals in the coming year.

Rome officials experience FSD Supervised

Tesla conducted the demo using a Model 3 equipped with Full Self-Driving (Supervised), tackling typical Roman traffic including complex intersections, roundabouts, pedestrian crossings and mixed users like cars, bikes and scooters.

The system showcased AI-based assisted driving, prioritizing safety while maintaining flow. FSD also handled overtakes and lane decisions, though with constant driver supervision.

Investor Andrea Stroppa detailed the event on X, noting the system’s potential to reduce severe collision risks by up to seven times compared to traditional driving, based on Tesla’s data from billions of global fleet miles. The session highlighted FSD’s role as an assistance tool in its Supervised form, not a replacement, with the driver fully responsible at all times.

Advertisement
-->

Path to European rollout

Tesla has logged over 1 million kilometers of testing across 17 European countries, including Italy, to refine FSD for local conditions. The fact that Rome officials personally tested FSD Supervised bodes well for the program’s approval, as it suggests that key individuals are closely watching Tesla’s efforts and innovations.

Assessor Patanè also highlighted the administration’s interest in technologies that boost road safety and urban travel quality, viewing them as aids for both private and public transport while respecting rules.

Replies on X urged involving Italy’s Transport Ministry to speed approvals, with one user noting, “Great idea to involve the mayor! It would be necessary to involve components of the Ministry of Transport and the government as soon as possible: it’s they who can accelerate the approval of FSD in Italy.”

Continue Reading