News
SpaceX sends Starship’s first vacuum Raptor engine to Boca Chica
For the first time, SpaceX has shipped a vacuum-optimized Raptor engine to its Boca Chica, Texas Starship factory days after the company’s present reiterated plans for an inaugural orbital launch attempt as early as July.
Back in March 2021, CEO Elon Musk confirmed that he’d set SpaceX a goal of attempting Starship’s first orbital launch no later than the end of July – around four and a half months distant at the time. Fifteen weeks later, though the prospects of an orbital launch attempt happening in July have practically shrunk to zero, SpaceX COO and President Gwynne Shotwell – best known for acting as a more grounded foil to Musk’s often impractical schedule estimates – reiterated that the company is still “shooting for July” for Starship’s first orbital launch attempt.
As of late June, hitting that target would require SpaceX to string together numerous extraordinary feats of engineering and rocketry in record time or attempt some extremely unorthodox corner-cutting.
The launch pad and launch vehicle hardware needed for Starship’s first space shot are currently far from ready for flight. On June 24th, Musk unexpectedly revealed that the Super Heavy booster prototype SpaceX is now in the late stages of assembly isn’t actually the booster that will carry Starship on its first space launch attempt. In other words, though dozens of rings in various states of work are strewn about SpaceX’s Boca Chica factory, the company has yet to begin assembling the massive 65m (~215 ft) tall booster required for the first orbital launch attempt.
Using Super Heavy Booster 3 (B3) as a ruler, assembly could easily take 9-10 weeks – starting whenever the process actually begins. If SpaceX started stacking Booster 4 today, in other words, it’s unlikely that the rocket would even be complete by the end of August. Barring SpaceX taking unprecedented shortcuts, completing the booster is just part of the process of preparing for flight and B4 would still need to be qualified for flight, likely involving at least one cryogenic proof and static fire test.
In a best-case scenario where SpaceX begins assembly today, manages to halve Booster 4 assembly time in one fell swoop, the sneaks the second Super Heavy ever completed through qualification testing in a single week, the orbital flight test booster still wouldn’t be ready for Starship installation (likely another unprecedented first) before mid-August.
That would then leave SpaceX five or six weeks to fully assemble Starship S20, a process that has yet to begin. Like Starship SN15, which Musk said sported “hundreds of improvements”, Musk has also stated that Ship 20 and all after it will feature another batch of upgrades needed to take Starship orbital. Starship SN15 was very gradually stacked and assembled over the course of almost four months, though that slow assembly can likely be blamed on the fact that SpaceX is busy testing Starships SN8 through SN11 and was effectively waiting to see if any other major changes might be required.

While most of S20’s upgrades are a mystery, the ship’s thrust dome – spotted in work at Boca Chica earlier this month – has already confirmed that the prototype will be the first with the necessary hardware for Raptor Vacuum engine installation. That likely means that S20 will also be the first Starship to attempt to static fire six Raptor engines*, potentially producing more thrust than a Falcon 9 booster. On June 27th, one such vacuum-optimized Raptor (RVac) arrived in Boca Chica for the first time ever, making it clear that the comparatively brand new engine may already be ready to start integrated Starship testing.
*Update: SpaceX CEO Elon Musk says that the Raptor Vacuum delivered to Boca Chica on June 27th is, in fact, meant for Starship S20, seemingly confirming that the prototype will fly with a full six Raptor engines.
Of course, beyond Starship and Super Heavy, SpaceX also has a great deal of work left to get the rocket’s first orbital-class launch facilities partially operational. SpaceX will need to complete and activate at least one or two more custom-built propellant storage tanks, sleeve those three or four tanks with three or four massive thermos-like ‘shells,’ complete thousands of feet of insulated plumbing and wiring, finish a massive ‘launch table,’ install that table on a six-legged ‘launch mount;’ outfit that table and mount with an array of power, avionics, hydraulics, and fueling equipment and plumbing; complete a ~145m (~475 ft) ‘integration tower,’ and perform the first fit checks and shakedown tests with a real booster or Starship.
Only then will SpaceX be able to attempt Starship’s first space launch. All told, it might not be literally impossible for SpaceX to complete all the above work in less than five weeks, but it’s safe to say that the odds of that happening could probably make a lottery ticket blush. Regardless, if Starship reaches orbit at any point before the end of 2021, it would beat out simpler “next-generation” rockets like Ariane 6, ULA’s Vulcan, and Blue Origin’s New Glenn despite beginning concerted development years later and with a far less certain funding situation.
Elon Musk
Tesla engineers deflected calls from this tech giant’s now-defunct EV project
Tesla engineers deflected calls from Apple on a daily basis while the tech giant was developing its now-defunct electric vehicle program, which was known as “Project Titan.”
Back in 2022 and 2023, Apple was developing an EV in a top-secret internal fashion, hoping to launch it by 2028 with a fully autonomous driving suite.
However, Apple bailed on the project in early 2024, as Project Titan abandoned the project in an email to over 2,000 employees. The company had backtracked its expectations for the vehicle on several occasions, initially hoping to launch it with no human driving controls and only with an autonomous driving suite.
Apple canceling its EV has drawn a wide array of reactions across tech
It then planned for a 2028 launch with “limited autonomous driving.” But it seemed to be a bit of a concession at that point; Apple was not prepared to take on industry giants like Tesla.
Wedbush’s Dan Ives noted in a communication to investors that, “The writing was on the wall for Apple with a much different EV landscape forming that would have made this an uphill battle. Most of these Project Titan engineers are now all focused on AI at Apple, which is the right move.”
Apple did all it could to develop a competitive EV that would attract car buyers, including attempting to poach top talent from Tesla.
In a new podcast interview with Tesla CEO Elon Musk, it was revealed that Apple had been calling Tesla engineers nonstop during its development of the now-defunct project. Musk said the engineers “just unplugged their phones.”
Musk said in full:
“They were carpet bombing Tesla with recruiting calls. Engineers just unplugged their phones. Their opening offer without any interview would be double the compensation at Tesla.”
Interestingly, Apple had acquired some ex-Tesla employees for its project, like Senior Director of Engineering Dr. Michael Schwekutsch, who eventually left for Archer Aviation.
Tesla took no legal action against Apple for attempting to poach its employees, as it has with other companies. It came after EV rival Rivian in mid-2020, after stating an “alarming pattern” of poaching employees was noticed.
Elon Musk
Tesla to a $100T market cap? Elon Musk’s response may shock you
There are a lot of Tesla bulls out there who have astronomical expectations for the company, especially as its arm of reach has gone well past automotive and energy and entered artificial intelligence and robotics.
However, some of the most bullish Tesla investors believe the company could become worth $100 trillion, and CEO Elon Musk does not believe that number is completely out of the question, even if it sounds almost ridiculous.
To put that number into perspective, the top ten most valuable companies in the world — NVIDIA, Apple, Alphabet, Microsoft, Amazon, TSMC, Meta, Saudi Aramco, Broadcom, and Tesla — are worth roughly $26 trillion.
Will Tesla join the fold? Predicting a triple merger with SpaceX and xAI
Cathie Wood of ARK Invest believes the number is reasonable considering Tesla’s long-reaching industry ambitions:
“…in the world of AI, what do you have to have to win? You have to have proprietary data, and think about all the proprietary data he has, different kinds of proprietary data. Tesla, the language of the road; Neuralink, multiomics data; nobody else has that data. X, nobody else has that data either. I could see $100 trillion. I think it’s going to happen because of convergence. I think Tesla is the leading candidate [for $100 trillion] for the reason I just said.”
Musk said late last year that all of his companies seem to be “heading toward convergence,” and it’s started to come to fruition. Tesla invested in xAI, as revealed in its Q4 Earnings Shareholder Deck, and SpaceX recently acquired xAI, marking the first step in the potential for a massive umbrella of companies under Musk’s watch.
SpaceX officially acquires xAI, merging rockets with AI expertise
Now that it is happening, it seems Musk is even more enthusiastic about a massive valuation that would swell to nearly four-times the value of the top ten most valuable companies in the world currently, as he said on X, the idea of a $100 trillion valuation is “not impossible.”
It’s not impossible
— Elon Musk (@elonmusk) February 6, 2026
Tesla is not just a car company. With its many projects, including the launch of Robotaxi, the progress of the Optimus robot, and its AI ambitions, it has the potential to continue gaining value at an accelerating rate.
Musk’s comments show his confidence in Tesla’s numerous projects, especially as some begin to mature and some head toward their initial stages.
Elon Musk
Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)
Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”
When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.
At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.
The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.
Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.
And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.
SpaceX’s trajectory has been just as dramatic.
The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.
Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.
And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.
In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.
The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”