Connect with us

SpaceX

SpaceX’s Starship hopper steps towards first hop with several cautious tests

SpaceX's Starhopper is seen during the most recent wet dress rehearsal test on March 28th. (NASASpaceflight - bocachicagal)

Published

on

SpaceX’s team of South Texas engineers and technicians have dived into a program of critical pre-hop tests of the first assembled Starship prototype, a partial-fidelity vehicle – known as (Star)Hopper – meant to soon perform low-altitude, low-velocity hop tests powered by Raptor.

Despite a lack of official information is known and SpaceX’s general silence – even to local residents – about Starhopper’s testing, some barebones insight can be derived from what has and hasn’t been done or seen over the past seven days of testing, as well as five apparent wet dress rehearsals (WDRs). To verify the operational integrity of Starhopper and iron out best practices for what is effectively a one-off mobile test stand for Raptor, these WDRs (and one more active test) have seen the unusual prototype filled with some amount of liquid oxygen and methane propellant, taken to flight (hop?) pressures, and generally monitored closely to gather valuable telemetry and judge Starhopper’s condition and hop-readiness. Aside from Hopper, these tests also serve as a shakedown for complex pad and support facilities sprung up from a dirt pile in barely three months.

Fueling the beast

Starhopper’s five (ish) wet dress rehearsal tests have demonstrated an intriguing level of caution relative to the last few months of BFR program development. Depending on how much propellant SpaceX has been filled the vehicle with and how much of that propellant they are able to recycle after each attempt, each dress rehearsal could cost upwards of six figures (USD), while also putting the unusual steel structure through multiple stress cycles.

No official info has been provided beyond a brief indication that SpaceX means to static-fire Starhopper before transitioning to tethered hops, meaning that it’s quite difficult to determine what exactly the testing plan and schedule are. In other words, these ~5 WDR tests could have been the plan all along, or each test could be producing data that has lead launch engineers to scrub Raptor ignition attempts nominally planned at the end of each rehearsal. For an entirely new and unfamiliar design like Starhopper, it seems likely that at least one or two WDRs were planned before any attempt to static fire the hopper’s lone Raptor, although it could also be the case that – much like most SpaceX static fire attempts – the WDR was simply built in as a precursor to ignition, barring off-nominal telemetry.

Local resident and spaceflight forum-goer /u/bocachicagal captured this excellent video of Starhopper’s most active test yet, perhaps the ignition of Raptor’s preburner. (NASASpaceflight – bocachicagal)

The third and most visibly active test yet (above) occurred on March 25th and saw Starhopper briefly vent a cloud of gas from Raptor, with some viewers guessing that a Raptor preburner (partial ignition) test had been observed. It’s unclear whether this Raptor (SN02, the second produced) completed acceptance testing in McGregor, Texas on the way from California to Boca Chica. If not, then the caution on display in these WDR tests (i.e. no visible Raptor ignitions) could also be a side-effect of extremely young age of the full-scale engine test program, known (publicly) to have only completed a couple dozen seconds of hot-fire testing in February.

The fidelity of Starhopper relative to its orbit-facing successors is also unclear. If the prototype’s structures, avionics, and plumbing are actually more indicative of the finished product than they appear, it’s possible that SpaceX tendency towards accepting the destruction of test hardware is in a bit more of a cautious state than usual, with a total loss of vehicle amounting to a significant technical setback and schedule delay. Based on the vehicle’s appearance and the apparent decision to entirely set aside the idea of installing a new fairing on Starhopper, it seems far more plausible that the prototype is more of a glorified mobile test stand for Raptor engines and Starship avionics (software) than anything else.

If Starhopper really can’t function as something more than a marginally mobile test stand for Raptor(s), then the value of actually hopping the craft could be quite minimal, perhaps offering useful data on Raptor’s control loop and behavior during flight operations. Still, CEO Elon Musk has stated several times that SpaceX has gotten good enough at the actual task of landing rockets vertically that it’s effectively a known quantity for Raptor and BFR, whereas the exotic atmospheric operations planned for Starship are the main uncertainty for successful recoveries.

Simultaneously, SpaceX is building the first orbital-class Starship prototype just a few thousand feet away from Starhopper’s new roost, utilizing stainless steel sheets almost three times thinner than the quarter-inch-thick steel the first prototype was built out of. It’s likely that Starhopper’s career will thus end up being rather short, given that the completion of the first near-final Starship would further minimize the low-fidelity hopper’s utility. If it’s actually meant to reach orbit, the newest Starship prototype will require the tripod fins and canard wings shown in SpaceX’s latest renders in order to safely land for future test flights, while Starhopper appears to be far too heavy and simplistic to warrant the expensive and time-consuming task of outfitting it with aerodynamic control surfaces and a new nose cone capable of surviving the associated forces.

Starhopper conducts one of its first wet dress rehearsals in Boca Chica. On the right is a flare stack, used to burn off unused methane. (NASASpaceflight – bocachicagal)

While additional testing may be done on Friday, March 29th, it appears that the next attempts for the first static fire (and hop tests) will begin next week (likely Monday) – SpaceX is unlikely to test on weekends due to the potential disruption it could cause for beach-going locals.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Cybertruck

Tesla Cybertruck fleet takes over at SpaceX’s Starbase

Interestingly, the Cybertruck uses the same exterior, a stainless steel alloy, as SpaceX rockets. This synergy between the two companies and their very different products shows a very unified mentality between Musk companies.

Published

on

Credit: @derek1ee | X

Tesla Cybertrucks have taken over at SpaceX’s Starbase facility in Texas, as hundreds of the all-electric pickup trucks were spotted late last week rounding out a massive fleet of vehicles.

The Cybertruck fleet is geared toward replacing gas vehicles that are used at Starbase for everyday operations. The only surprise about this is that it was not done sooner:

Deliveries have been going on for a few weeks, as Cybertrucks have made their way across the state of Texas from Austin to Starbase so they could be included in SpaceX’s fleet of vehicles at the facility.

Interestingly, the Cybertruck uses the same exterior, a stainless steel alloy, as SpaceX rockets. This synergy between the two companies and their very different products shows a very unified mentality between Musk companies.

However, there are some other perspectives to consider as SpaceX is utilizing such a massive fleet of Cybertrucks. Some media outlets (unsurprisingly) are seeing this as a move of weakness by both Tesla and SpaceX, as the aerospace company is, in a sense, “bailing out” lagging sales for the all-electric pickup.

It’s no secret that Tesla has struggled with the Cybertruck this year, and deliveries have been underwhelming in the sense that the company was anticipating between 1 million and 2 million orders for the vehicle before it was widely produced.

A lot of things changed with the Cybertruck between its 2019 unveiling and 2023 initial deliveries, most notably, price.

The price of the Cybertruck swelled significantly and priced out many of those who had pre-ordered it. Some have weighed the option of whether this purchase was a way to get rid of sitting inventory.

However, it seems more logical to consider the fact that SpaceX was likely always going to transition to Teslas for its fleet, especially at Starship, at some point.

It doesn’t seem out of the question that one Musk company would utilize another Musk company’s products, especially considering the Cybertruck has been teased as the vehicle that would be present on Mars.

Continue Reading

News

SpaceX successfully launches 100th Starlink mission of 2025

With 100 Starlink missions completed for 2025, space enthusiasts have noted that SpaceX has successfully launched 2,554 Starlink satellites so far this year.

Published

on

Spacex-starlink-dish-gigabit-speed-vs-europe
(Credit: Starlink)

SpaceX achieved its 100th Starlink mission of the year on Friday, October 31, marking another milestone for 2025. 

A Falcon 9 rocket carrying 28 Starlink broadband satellites successfully lifted off from Vandenberg Space Force Base in California at 4:41 p.m. ET, carrying another 28 Starlink satellites to Low Earth Orbit (LEO).

Falcon 9 booster’s 29th flight

Roughly 8.5 minutes after liftoff, the Falcon 9’s first stage touched down on the drone ship Of Course I Still Love You in the Pacific Ocean. This marked the booster’s 29th flight, which is approaching SpaceX’s reuse record of 31 missions.

This latest mission adds to SpaceX’s impressive 138 Falcon 9 launches in 2025, 99 of which were dedicated to Starlink, according to Space.com. The company’s focus on reusing boosters has enabled this breakneck pace, with multiple launches each week supporting both Starlink’s expansion and external customers.

Starlink’s network continues massive global expansion

Starlink remains the largest active satellite constellation in history, with more than 10,000 satellites launched, nearly 8,800 of which are currently active. SpaceX recently achieved Starlink’s 10,000-satellite milestone. With 100 Starlink missions completed for 2025, space enthusiasts have noted that SpaceX has successfully launched 2,554 Starlink satellites so far this year.

Advertisement

Starlink, which provides high-speed, low-latency internet connectivity even to the world’s most remote areas, has been proven to be life-changing technology for people across the globe. The service is currently operational in about 150 countries, and it currently has over 5 million subscribers worldwide. From this number, 2.7 million joined over the past year.

Continue Reading

SpaceX

SpaceX checks off 49 lunar lander milestones in push toward Artemis III

Published

on

Credit: SpaceX

SpaceX has revealed that it has completed 49 major milestones for NASA’s Human Landing System (HLS) program, marking significant progress in the development of the Starship lunar lander that will deliver astronauts to the Moon. 

The updates were detailed in SpaceX’s new blog post To the Moon and Beyond, which was recently posted on the private space company’s official website.

As noted by SpaceX, the 49 milestones that were completed by its HLS team were “tied to developing the subsystems, infrastructure, and operations” needed to safely land humans back into the lunar surface. SpaceX noted that it has only received funding on contractual milestones that have been successfully completed, the vast majority of which have been achieved on time or ahead of schedule.

Following are highlights of SpaceX’s completed milestones, as per the company’s post. 

Advertisement
  • Lunar environmental control and life support and thermal control system demonstrations, using a full-scale cabin module inhabited by multiple people to test the capability to inject oxygen and nitrogen into the cabin environment and accurately manage air distribution and sanitation, along with humidity and thermal control. The test series also measured the acoustic environments inside the cabin
  • Docking adapter qualification of the docking system that will link Starship and Orion in space, an androgynous SpaceX docking system capable of serving as the active system or passive system and based on the flight-proven Dragon 2 active docking system
  • Landing leg drop test of a full-scale article at flight energies onto simulated lunar regolith to verify system performance and to study foot-to-regolith interaction
  • Raptor lunar landing throttle test demonstrating a representative thrust profile that would allow Starship to land on the lunar surface
  • Micrometeoroid and orbital debris testing of shielding, insulation, and window panels, analyzing different material stackups that will be used to protect Starship from impact hazards and harsh thermal conditions
  • Landing software, sensor, and radar demonstrations testing navigation and sensing hardware and software that will be used by Starship to locate and safely descend to a precise landing site on the Moon
  • Software architecture review to define the schematic of major vehicle control processes, what physical computers they will run on, and software functions for critical systems like fault detection, caution and warning alerts, and command and telemetry control
  • Raptor cold start demonstrations using both sea-level and vacuum-optimized Raptor engines that are pre-chilled prior to startup to simulate the thermal conditions experienced after an extended time in space
  • Integrated lunar mission operations plan review, covering how SpaceX and NASA will conduct integrated operations, develop flight rules and crew procedures, and the high-level mission operation plan
  • Depot power module demonstration, testing prototype electrical power generation and distribution systems planned to be used on the propellant depot variant of Starship
  • Ground segment and radio frequency (RF) communications demonstration, testing the capability to send and receive RF communications between a flight-equivalent ground station and a flight-equivalent vehicle RF system
  • Elevator and airlock demonstration, which was conducted in concert with Axiom to utilize flight-representative pressurized EVA suits, to practice full operation of the crew elevator which will be used to transfer crew and cargo between Starship and the lunar surface
  • Medical system demonstration covering the crew medical system on Starship and the telemedicine capability between the ground and crew
  • Hardware in the loop testbed activation for the propellant transfer flight test which uses a testbed with flight representative hardware to run simulations for the upcoming propellant transfer flight test

Ultimately, SpaceX’s message is clear. With its plans for a simplified architecture, the timeframe of the first crewed lunar landing of the current century could happen sooner than expected.

Musk definitely seems determined to prove skeptics wrong, with the CEO declaring on X that Starship will be the vehicle that would pave the way for the buildout of a base on the Moon. “Starship will build Moonbase Alpha,” Musk wrote.

Continue Reading

Trending