Connect with us

News

SpaceX installs first ‘Mechazilla’ arm on Starship launch tower

SpaceX has installed the first arm on Starship's "Mechazilla" launch tower. (NASASpaceflight - bocachicagal)

Published

on

One month after SpaceX stacked Starship’s South Texas ‘launch tower’ to its full height, the company has installed the first arm on what amounts to the backbone of ‘Mechazilla.’

At the end of July, after less than four months of work, a team of SpaceX workers and contractors installed the final prefabricated section of a ~145m (~475 ft) tall tower meant to support orbital Starship launches. Above all else, SpaceX’s first custom-built ‘launch tower’ is a sort of backbone or anchor point for several massive, mechanical arms that will accomplish the actual tasks of servicing – and, perhaps, catching – Starships and Super Heavy boosters.

Work on all three of the arms expected to make up what SpaceX CEO Elon Musk has described as “Mechazilla” has been visibly underway since the last week of June as a small army of welders carefully assembled dozens of sections of heavy-duty steel pipe into house-sized frames. Almost exactly two months later, SpaceX has installed the first of those three arms on the exterior of Starship’s skyscraper-sized launch tower.

Known as the tower’s quick-disconnect or QD swing arm, the standalone structure is reportedly designed to accomplish a few different tasks. First, as its unofficial name might suggest, the QD arm will hold a quick-disconnect umbilical connector that will temporarily attach to the base of Starships to load them with fuel, oxidizer, and other consumables and link them to ground power and networking. For years, it appeared that SpaceX planned to fuel Starship upper stages through their Super Heavy boosters, which will themselves be connected to umbilical panels on a table-like launch mount that sits beside the tower.

However, once work began on Starship S20, the first potentially space-capable prototype, it was clear that SpaceX had foregone the umbilical plate normally installed at the base of Starship skirts and moved that connection to the ship’s lower back. Musk later confirmed as much in interviews and tweets, revealing that longstanding plans to dock Starships aft to aft for in-space refueling were also up in the air. As of late, aside from reiterating that the launch pad itself (“Stage Zero,” per Musk) is even more complex and difficult than Starship or Super Heavy, SpaceX’s CEO has also repeatedly stated a desire to offload as many systems as possible onto the launch pad – seemingly regardless of the complexity of the alternative.

Advertisement
To the left of the QD arm’s former assembly spot are the tower’s ‘chopstick’ catcher arms (left) and what’s believed to be the carriage (right) they’ll be installed on. (NASASpaceflight – bocachicagal)

Enter the building-sized robot informally known as Mechazilla. While the relatively simple swinging ‘QD arm’ that will fuel Starship and stabilize both stages of the rocket is a common feature of rockets and launch pads, the only experience SpaceX itself has with umbilical swing arms is the Crew Access Arm (CAA) that allows astronauts and cargo to board Dragon spacecraft after Falcon 9 goes vertical – a structure with near-zero umbilical utility. Technically, the transporter/erectors (T/Es) that cradle Falcon rockets, lift them vertical, and fuel them before launch have some similarities with swing arms but SpaceX has always used simpler and more reliable passive mechanisms whenever possible.

A step further, though, SpaceX has also seemingly foregone the installation of a basic crane on top of its Starship tower and Musk himself has developed an almost infamous aversion to the inclusion of something as seemingly simple as landing legs on Super Heavy boosters – and, eventually, perhaps even (some) Starship variants. Instead of adding rudimentary legs to Super Heavy prototypes, Musk has seemingly pushed SpaceX to turn Starship’s launch tower into a complex, vulnerable, and fragile rocket recovery system. Beyond the comparatively mundane QD arm, Musk says that SpaceX will ultimately install a pair of massive house-sized steel arms mounted on a sort of external elevator. Those arms will apparently be capable of actuating and moving up and down the tower with the speed, precision, and reliability needed to quite literally catch Super Heavy boosters – and, eventually, Starships – out of mid-air.

The team tasked with designing and building those rocket-catching arms have affectionately deemed them “chopsticks” – a nod towards the kind of nuanced actuation they’ll need to recover the world’s largest rocket boosters and upper stages without missing or destroying them. Having really only just perfected propulsive vertical landing with Falcon 9 and Falcon Heavy boosters, SpaceX thus intends to throw a few extra points of failure into the mix.

To SpaceX and Musk’s credit, whether the company’s second attempt at catching rockets goes as well as the first, some version of the massive ‘chopstick’ arms SpaceX is working on was likely going to be necessary just to rapidly turn around boosters and Starships – and do so regardless (within reason) of weather conditions. By replacing a tower crane with giant arms, SpaceX will hopefully be able to stack Starship on Super Heavy (and Super Heavy on the launch mount) even in the high winds that are almost always present on the South Texas Gulf Coast. If SpaceX can also reliably catch boosters with those arms, it could be a significant upgrade for the operations side of Starship reusability. For now, though, only time will tell.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Jim Cramer chimes in on Tesla CEO Elon Musk’s pay package

“Don’t be small-minded: Tesla is about robots, Full Self-Driving, the future. Give him his package.”

Published

on

Credit: The Street

Investor and host of Mad Money on MSNBC , Jim Cramer, has chimed in on Tesla CEO Elon Musk’s pay package and whether it should be rewarded to the frontman or not.

Cramer has drawn a lot of attention regarding his sentiments on Tesla, as investors have routinely given him a pretty hard time over what he’s said about the company.

For the past few years, we have covered his comments on Tesla when he has something to say, mostly because his opinion on the stock seems to change pretty frequently; at a minimum, he has something different to say about it every few months.

However, Cramer knows Musk’s value to Tesla, and said on Thursday that he believes the CEO deserves his pay package:

“Don’t be small-minded: Tesla is about robots, Full Self-Driving, the future. Give him his package.”

Cramer’s comments come just one day after Tesla’s Q3 2025 Earnings Call, where Musk took several opportunities to call out the importance of the pay package and how it could impact the company’s future — with or without him.

Musk said at one point that he would not feel comfortable continuing to develop the company’s massive fleet of Optimus bots without having appropriate control of the company from a voting perspective.

He said he does not want so much power that if he “were to lose his mind,” he could not be removed. However, he does feel he needs to be protected from “activist shareholders,” or “corporate terrorists” like proxy groups Institutional Shareholder Services (ISS) and Glass Lewis:

“My fundamental concern with regard to how much voting control I have at Tesla is if I go ahead and build this enormous robot army, can I just be ousted at some point in the future? …It’s just, if we build this robot army, do I have at least a strong influence over that robot army, not current control, but a strong influence? That’s what it comes down to in a nutshell. I don’t feel comfortable wielding that robot army if I don’t have at least a strong influence.”

At the end of the call, Musk said:

“Like I said, I just don’t feel comfortable building a robot army here and then being ousted because of some asinine recommendations from ISS and Glass Lewis, who have no freaking clue. I mean, those guys are corporate terrorists.”

Cramer is one of many who realize Musk’s importance to Tesla, and how the company would likely lack the guidance and prowess it does without his planning and drive. However, Tesla shareholders will have the ultimate say on November 6 when they vote on Musk’s compensation plan.

Continue Reading

Elon Musk

Tesla is stumped on how to engineer this Optimus part, but they’re close

Published

on

Credit: Tesla

Tesla has been stumped on how to engineer one crucial part of the Optimus bot, but CEO Elon Musk says the company is “on the cusp” of achieving something great with the project.

During the Q3 2025 Earnings Call, Tesla CEO Elon Musk revealed the company is moving closer to a major breakthrough with the Optimus project, and said they are “on the cusp of something really tremendous.”

However, it seems there is one specific portion of the robot that has truly stumped engineers at the company: the hand, fingers, and forearm.

Musk went into great detail about how incredibly complex and amazing the human hand is, highlighting its dexterity and capability, as its ability to perform a wide variety of tasks is especially impressive:

“I don’t want to downplay the difficulty, but it’s an incredibly difficult thing, especially to create a hand that is as dexterous and capable as the human hand, which is incredible. The human hand is an incredible thing. The more you study the human hand, the more incredible you realize it is, and why you need four fingers and a thumb, why the fingers have certain degrees of freedom, why the various muscles are of different strengths, and fingers are of different lengths. It turns out that those are all there for a reason.”

It’s been pretty apparent that Tesla has made massive strides in the Optimus project, especially considering it has been able to walk down hills, learn things like Kung Fu, and even perform service tasks like serving food and drinks.

However, a recent look at a Gen 2.5 version of Optimus posted by Marc Benioff, the CEO of Salesforce, showed that Tesla was likely using mannequin hands until it developed something that was both useful and aesthetically pleasing:

Musk continued on the call last night that the Tesla team was confronted with an “incredibly difficult” challenge from an engineering perspective, and the hands and actuators for that specific part were tough to figure out:

“Making the hand and forearm, because most of the actuators, just like the human hand, the muscles that control your hand are actually primarily in your forearm. The Optimus hand and forearm is an incredibly difficult engineering challenge. I’d say it’s more difficult than the rest of the robot from an electromechanical standpoint. The forearm and hand are more difficult than the entire rest of the robot. But really, in order to have a useful generalized robot, you do need an incredible hand.”

The CEO continued that developing a useful and effective robot was “crucial to the future of the company,” and that he works with Optimus’s design team each Friday night.

Continue Reading

News

Elon Musk sets definitive Tesla Cybercab production date and puts a rumor to rest

“The single biggest expansion in production will be the Cybercab, which starts production in Q2 next year.” -Elon Musk

Published

on

Credit: Teslarati

Tesla CEO Elon Musk finally set a definitive date for Tesla Cybercab production and, at the same time, put a substantial rumor regarding the vehicle that has been circulating within the community to rest.

Tesla’s Cybercab was unveiled last October as the company’s two-seater, affordable option that would ultimately be the car used for autonomous travel. It was initially slated for production in late 2025 or early 2026.

Tesla is ramping up its hiring for the Cybercab production team

However, Tesla has finally said it will start production of the Cybercab in Q2 2026, a more concrete date for the company, as it has moved the entire project forward in recent weeks by testing it at the Fremont Test Track and conducting crash safety assessments.

Musk said on the Q3 2025 Earnings Call:

“The single biggest expansion in production will be the Cybercab, which starts production in Q2 next year. That’s really a vehicle that’s optimized for full autonomy. It, in fact, does not have a steering wheel or pedals and is really an enduring optimization on minimizing cost per mile for fully considered cost per mile of operation.”

In that quote, Musk also put a rumor that has been circulating within the community to rest. Some started to speculate whether Cybercab would be sold with a steering wheel and pedals, as many of the elements of the car seemed to hint toward not being exclusively autonomous, including side mirrors being equipped, among other things.

It has been interesting to see some consider whether Tesla would sell the vehicle with the elements that would enable human control, especially as there have been a handful of images of the vehicle on company property with a steering wheel spotted.

However, Musk doubled down on the autonomous nature of the Cybercab with this confirmation during the earnings call, something that many investors likely wanted to hear because it was, in a way, a vote of confidence for the company’s path to autonomy.

Continue Reading

Trending