Connect with us

News

SpaceX’s Starship Super Heavy booster needs a custom assembly tower

SpaceX could begin assembling Starship's first Super Heavy boosterjust a few months from now. (SpaceX)

Published

on

SpaceX CEO Elon Musk has confirmed that Starship’s Super Heavy rocket booster will get its own tower-like vehicle assembly building (VAB) – and work on the structure may have already begun.

While the only visible work SpaceX has thus far completed on its next-generation Starship launch vehicle is related to the more complex and unproven upper stage of the rocket, its Super Heavy first stage (booster) is just as critical. For SpaceX, Starship was the perfect starting point, itself following on the footsteps of a largely successful multi-year Raptor engine development program. Substantially smaller than Super Heavy and requiring 5-10 times fewer engines, Starship serves as a testbed for an almost entirely new suite of technologies and strategies SpaceX is employing to build massive rockets out of commodity steel.

In recent months, particularly following the first successful pressure test of a full-scale Starship tank section in April, SpaceX has effectively proven that those uncharacteristically cheap and simple materials and methods can, in fact, build rocket structures that should stand up to orbital spaceflight. In theory, aside from the booster’s 31-engine thrust structure, the same methods and materials used to build Starships can be applied unchanged to manufacture Super Heavy. The booster’s almost unfathomable size, however, will necessitate its own dedicated assembly facilities.

Roughly 70m (230 ft) tall, the same height an entire two-stage Falcon 9 rocket (70m), Starship’s Super Heavy booster is outfitted with by four vast grid fins, six fixed landing legs, and up to 31 Raptor engines. (SpaceX)

While Starship itself is not exactly small at ~50m (165 ft) tall and 9m (30ft) wide, the Super Heavy booster tasked with launching the ship on its way to orbit will easily be the largest individual rocket stage ever built. Currently expected to measure 70m (230 ft) tall, Super Heavy – just the first stage of the Starship launch vehicle – will already be as tall as an entire Falcon 9 or Falcon Heavy and weigh roughly three times more than the latter triple-booster rocket when fully fueled. At liftoff, Super Heavy will produce more than triple the thrust of Falcon Heavy and double the thrust of Saturn V, the most powerful liquid-fueled rocket to reach orbit.

SpaceX’s Starship VAB and what is likely the foundation of a new Super Heavy VAB are visible here in a May 2020 flyover. (LabPadre)
Completed in February 2020, SpaceX is already simultaneously stacking multiple Starships (SN5 & SN6) in its new VAB. (NASASpaceflight – bocachicagal)

Thanks to the sheer size of the booster, SpaceX’s existing Starship-sized vehicle/vertical assembly building (VAB) is far too small for Super Heavy and is even too short to fully stack a ~50m Starship. SpaceX’s contractor of choice started assembling that VAB around January 15th and the facility was able to begin supporting its first Starship stacking and welding operations on March 2nd, just a month and a half later, with the structure fully completed by March 18th. As such, assuming the in-work foundation is as close to completion as it seems and SpaceX uses the same contractor for the next building, Super Heavy’s VAB could be ready to build the first massive booster prototype as early as July or August. Things could take a bit longer given that Musk says the booster VAB will be 81m (265 ft) tall, nearly twice the height of Starship’s VAB, but likely by no more than a few weeks.

That timeline meshes well with a senior SpaceX engineer and executive’s recent suggestion that the first orbital Starship launch attempt could still happen before the end of the year. Of course, for Super Heavy to become a genuine priority for SpaceX and receive the resources necessary to achieve that extremely ambitious goal, Starship will have to perform almost flawlessly during a series of increasingly challenging tests planned over the next few months. First up, SpaceX needs to finish repairing the launch pad after Starship SN4 exploded during testing and Starship SN5 needs to be transported to the pad to complete acceptance tests, static fire(s), and its first 150m (~500 ft) hop test. After that, SpaceX will either move on to a 2 km (1.25 mi) hop or a more ambitious 20 km (12.5 mi) flight designed to test Starship’s skydiver-like approach to landing.

If Starship SN5 or SN6 manage to complete those aforementioned tests, the horse may actually be in front of the cart for Super Heavy prototype production and Starship’s first orbital launch attempt.

Advertisement

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor

Published

on

Tesla has officially launched public Robotaxi rides in Austin, Texas, without a Safety Monitor in the vehicle, marking the first time the company has removed anyone from the vehicle other than the rider.

The Safety Monitor has been present in Tesla Robotaxis in Austin since its launch last June, maintaining safety for passengers and other vehicles, and was placed in the passenger’s seat.

Tesla planned to remove the Safety Monitor at the end of 2025, but it was not quite ready to do so. Now, in January, riders are officially reporting that they are able to hail a ride from a Model Y Robotaxi without anyone in the vehicle:

Tesla started testing this internally late last year and had several employees show that they were riding in the vehicle without anyone else there to intervene in case of an emergency.

Tesla has now expanded that program to the public. It is not active in the entire fleet, but there are a “few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors,” Ashok Elluswamy said:

Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing

The Robotaxi program also operates in the California Bay Area, where the fleet is much larger, but Safety Monitors are placed in the driver’s seat and utilize Full Self-Driving, so it is essentially the same as an Uber driver using a Tesla with FSD.

In Austin, the removal of Safety Monitors marks a substantial achievement for Tesla moving forward. Now that it has enough confidence to remove Safety Monitors from Robotaxis altogether, there are nearly unlimited options for the company in terms of expansion.

While it is hoping to launch the ride-hailing service in more cities across the U.S. this year, this is a much larger development than expansion, at least for now, as it is the first time it is performing driverless rides in Robotaxi anywhere in the world for the public to enjoy.

Continue Reading

Investor's Corner

Tesla Earnings Call: Top 5 questions investors are asking

Published

on

(Credit: Tesla)

Tesla has scheduled its Earnings Call for Q4 and Full Year 2025 for next Wednesday, January 28, at 5:30 p.m. EST, and investors are already preparing to get some answers from executives regarding a wide variety of topics.

The company accepts several questions from retail investors through the platform Say, which then allows shareholders to vote on the best questions.

Tesla does not answer anything regarding future product releases, but they are willing to shed light on current timelines, progress of certain projects, and other plans.

There are five questions that range over a variety of topics, including SpaceX, Full Self-Driving, Robotaxi, and Optimus, which are currently in the lead to be asked and potentially answered by Elon Musk and other Tesla executives:

SpaceX IPO is coming, CEO Elon Musk confirms

  1. You once said: Loyalty deserves loyalty. Will long-term Tesla shareholders still be prioritized if SpaceX does an IPO?
    1. Our Take – With a lot of speculation regarding an incoming SpaceX IPO, Tesla investors, especially long-term ones, should be able to benefit from an early opportunity to purchase shares. This has been discussed endlessly over the past year, and we must be getting close to it.
  2. When is FSD going to be 100% unsupervised?
    1. Our Take – Musk said today that this is essentially a solved problem, and it could be available in the U.S. by the end of this year.
  3. What is the current bottleneck to increase Robotaxi deployment & personal use unsupervised FSD? The safety/performance of the most recent models or people to monitor robots, robotaxis, in-car, or remotely? Or something else?
    1. Our Take – The bottleneck seems to be based on data, which Musk said Tesla needs 10 billion miles of data to achieve unsupervised FSD. Once that happens, regulatory issues will be what hold things up from moving forward.
  4. Regarding Optimus, could you share the current number of units deployed in Tesla factories and actively performing production tasks? What specific roles or operations are they handling, and how has their integration impacted factory efficiency or output?
    1. Our Take – Optimus is going to have a larger role in factories moving forward, and later this year, they will have larger responsibilities.
  5. Can you please tie purchased FSD to our owner accounts vs. locked to the car? This will help us enjoy it in any Tesla we drive/buy and reward us for hanging in so long, some of us since 2017.
    1. Our Take – This is a good one and should get us some additional information on the FSD transfer plans and Subscription-only model that Tesla will adopt soon.

Tesla will have its Earnings Call on Wednesday, January 28.

Continue Reading

Elon Musk

Elon Musk shares incredible detail about Tesla Cybercab efficiency

Published

on

(Credit: Tesla North America | X)

Elon Musk shared an incredible detail about Tesla Cybercab’s potential efficiency, as the company has hinted in the past that it could be one of the most affordable vehicles to operate from a per-mile basis.

ARK Invest released a report recently that shed some light on the potential incremental cost per mile of various Robotaxis that will be available on the market in the coming years.

The Cybercab, which is detailed for the year 2030, has an exceptionally low cost of operation, which is something Tesla revealed when it unveiled the vehicle a year and a half ago at the “We, Robot” event in Los Angeles.

Musk said on numerous occasions that Tesla plans to hit the $0.20 cents per mile mark with the Cybercab, describing a “clear path” to achieving that figure and emphasizing it is the “full considered” cost, which would include energy, maintenance, cleaning, depreciation, and insurance.

ARK’s report showed that the Cybercab would be roughly half the cost of the Waymo 6th Gen Robotaxi in 2030, as that would come in at around $0.40 per mile all in. Cybercab, at scale, would be at $0.20.

Credit: ARK Invest

This would be a dramatic decrease in the cost of operation for Tesla, and the savings would then be passed on to customers who choose to utilize the ride-sharing service for their own transportation needs.

The U.S. average cost of new vehicle ownership is about $0.77 per mile, according to AAA. Meanwhile, Uber and Lyft rideshares often cost between $1 and $4 per mile, while Waymo can cost between $0.60 and $1 or more per mile, according to some estimates.

Tesla’s engineering has been the true driver of these cost efficiencies, and its focus on creating a vehicle that is as cost-effective to operate as possible is truly going to pay off as the vehicle begins to scale. Tesla wants to get the Cybercab to about 5.5-6 miles per kWh, which has been discussed with prototypes.

Additionally, fewer parts due to the umboxed manufacturing process, a lower initial cost, and eliminating the need to pay humans for their labor would also contribute to a cheaper operational cost overall. While aspirational, all of the ingredients for this to be a real goal are there.

It may take some time as Tesla needs to hammer the manufacturing processes, and Musk has said there will be growing pains early. This week, he said regarding the early production efforts:

“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”

Continue Reading