News
SpaceX’s Starship Super Heavy booster needs a custom assembly tower
SpaceX CEO Elon Musk has confirmed that Starship’s Super Heavy rocket booster will get its own tower-like vehicle assembly building (VAB) – and work on the structure may have already begun.
While the only visible work SpaceX has thus far completed on its next-generation Starship launch vehicle is related to the more complex and unproven upper stage of the rocket, its Super Heavy first stage (booster) is just as critical. For SpaceX, Starship was the perfect starting point, itself following on the footsteps of a largely successful multi-year Raptor engine development program. Substantially smaller than Super Heavy and requiring 5-10 times fewer engines, Starship serves as a testbed for an almost entirely new suite of technologies and strategies SpaceX is employing to build massive rockets out of commodity steel.
In recent months, particularly following the first successful pressure test of a full-scale Starship tank section in April, SpaceX has effectively proven that those uncharacteristically cheap and simple materials and methods can, in fact, build rocket structures that should stand up to orbital spaceflight. In theory, aside from the booster’s 31-engine thrust structure, the same methods and materials used to build Starships can be applied unchanged to manufacture Super Heavy. The booster’s almost unfathomable size, however, will necessitate its own dedicated assembly facilities.

While Starship itself is not exactly small at ~50m (165 ft) tall and 9m (30ft) wide, the Super Heavy booster tasked with launching the ship on its way to orbit will easily be the largest individual rocket stage ever built. Currently expected to measure 70m (230 ft) tall, Super Heavy – just the first stage of the Starship launch vehicle – will already be as tall as an entire Falcon 9 or Falcon Heavy and weigh roughly three times more than the latter triple-booster rocket when fully fueled. At liftoff, Super Heavy will produce more than triple the thrust of Falcon Heavy and double the thrust of Saturn V, the most powerful liquid-fueled rocket to reach orbit.


Thanks to the sheer size of the booster, SpaceX’s existing Starship-sized vehicle/vertical assembly building (VAB) is far too small for Super Heavy and is even too short to fully stack a ~50m Starship. SpaceX’s contractor of choice started assembling that VAB around January 15th and the facility was able to begin supporting its first Starship stacking and welding operations on March 2nd, just a month and a half later, with the structure fully completed by March 18th. As such, assuming the in-work foundation is as close to completion as it seems and SpaceX uses the same contractor for the next building, Super Heavy’s VAB could be ready to build the first massive booster prototype as early as July or August. Things could take a bit longer given that Musk says the booster VAB will be 81m (265 ft) tall, nearly twice the height of Starship’s VAB, but likely by no more than a few weeks.
That timeline meshes well with a senior SpaceX engineer and executive’s recent suggestion that the first orbital Starship launch attempt could still happen before the end of the year. Of course, for Super Heavy to become a genuine priority for SpaceX and receive the resources necessary to achieve that extremely ambitious goal, Starship will have to perform almost flawlessly during a series of increasingly challenging tests planned over the next few months. First up, SpaceX needs to finish repairing the launch pad after Starship SN4 exploded during testing and Starship SN5 needs to be transported to the pad to complete acceptance tests, static fire(s), and its first 150m (~500 ft) hop test. After that, SpaceX will either move on to a 2 km (1.25 mi) hop or a more ambitious 20 km (12.5 mi) flight designed to test Starship’s skydiver-like approach to landing.
If Starship SN5 or SN6 manage to complete those aforementioned tests, the horse may actually be in front of the cart for Super Heavy prototype production and Starship’s first orbital launch attempt.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla exec: Preparations underway but no firm timeline yet for FSD rollout in China
The information was related by Tesla China Vice President Grace Tao in a comment to local media.
Tesla has not set a specific launch date for Full Self-Driving in China, despite the company’s ongoing preparations for a local FSD rollout.
The information was related by Tesla China Vice President Grace Tao in a comment to local media.
Tesla China prepares FSD infrastructure
Speaking in a recent media interview, the executive confirmed that Tesla has established a local training center in China to support the full adaptation of FSD to domestic driving conditions, as noted in a report from Sina News. However, she also noted that the company does not have a specific date when FSD will officially roll out in China.
“We have set up a local training center in China specifically to handle this adaptation,” Tao said. “Once officially released, it will demonstrate a level of performance that is no less than, and may even surpass, that of local drivers.”
Tao also emphasized the rapid accumulation of data by Tesla’s FSD system, with the executive highlighting that Full Self-Driving has now accumulated more than 7.5 billion miles of real-world driving data worldwide.
Possible 2026 rollout
The Tesla executive’s comments come amidst Elon Musk’s previous comments suggesting that regulatory approval in China could arrive sometime this 2026. During Tesla’s annual shareholder meeting in November 2025, Musk clarified that FSD had only received “partial approval” in China, though full authorization could potentially arrive around February or March 2026.
Musk reiterated that timeline at the World Economic Forum in Davos, when he stated that FSD approval in China could come as early as February.
Tesla’s latest FSD software, version 14, is already being tested in more advanced deployments in the United States. The company has also started the rollout of its fully unsupervised Robotaxis in Austin, Texas, which no longer feature safety monitors.
News
Tesla Semi lines up for $165M in California incentives ahead of mass production
The update was initially reported by The Los Angeles Times.
Tesla is reportedly positioned to receive roughly $165 million in California clean-truck incentives for its Semi.
The update was initially reported by The Los Angeles Times.
As per the Times, the Tesla Semi’s funding will come from California’s Hybrid and Zero-Emission Truck and Bus Incentive Project (HVIP), which was designed to accelerate the adoption of cleaner medium- and heavy-duty vehicles. Since its launch in 2009, the HVIP has distributed more than $1.6 billion to support zero-emission trucks and buses across the state.
In recent funding rounds, nearly 1,000 HVIP vouchers were provisionally reserved for the Tesla Semi, giving Tesla a far larger share of available funding than any other automaker. An analysis by the Times found that even after revisions to public data, Tesla still accounts for about $165 million in incentives. The next-largest recipient, Canadian bus manufacturer New Flyer, received roughly $68 million.
This is quite unsurprising, however, considering that the Tesla Semi does not have a lot of competition in the zero-emissions trucking segment.
To qualify for HVIP funding, vehicles must be approved by the California Air Resources Board and listed in the program catalog, as noted in an electrive report. When the Tesla Semi voucher applications were submitted, public certification records only showed eligibility for the 2024 model year, with later model years not yet listed.
State officials have stated that certification details often involve confidential business information and that funding will only be paid once vehicles are fully approved and delivered. Still, the first-come, first-served nature of HVIP means large voucher reservations can effectively crowd out competing electric trucks. Incentive amounts for the Semi reportedly ranged from about $84,000 to as much as $351,000 per vehicle after data adjustments.
Unveiled in 2017, the Tesla Semi has seen limited deliveries so far, though CEO Elon Musk has recently reiterated that the Class 8 all-electric truck will enter mass production this year.
Elon Musk
Tesla reveals major info about the Semi as it heads toward ‘mass production’
Some information, like trim levels and their specs were not revealed by Tesla, but now that the Semi is headed toward mass production this year, the company finally revealed those specifics.
Tesla has revealed some major information about the all-electric Semi as it heads toward “mass production,” according to CEO Elon Musk.
The Semi has been working toward a wider production phase after several years of development, pilot programs, and the construction of a dedicated production facility that is specifically catered to the manufacturing of the vehicle.
However, some information, like trim levels and their specs were not revealed by Tesla, but now that the Semi is headed toward mass production this year, the company finally revealed those specifics.
Tesla Semi undergoes major redesign as dedicated factory preps for deliveries
Tesla plans to build a Standard Range and Long Range Trim level of the Semi, and while the range is noted in the company’s newly-released spec list, there is no indication of what battery size will be equipped by them. However, there is a notable weight difference between the two of roughly 3,000 lbs, and the Long Range configuration has a lightning-fast peak charging speed of 1.2 MW.
This information is not available for the Standard Range quite yet.
The spec list is as follows:
- Standard Range:
- 325 miles of range (at 82,000 lbs gross combination weight
- Curb Weight: <20,000
- Energy Consumption: 1.7 kWh per mile
- Powertrain: 3 independent motors on rear axles
- Charging: Up to 60% of range in 30 minutes
- Charge Type: MCS 3.2
- Drive Power: Up to 800 kW
- ePTO (Electric Power Take Off): Up to 25 kW
- Long Range:
- Range: 500 miles (at 82,000 lbs gross combination weight)
- Curb Weight: 23,000 lbs
- Energy Consumption: 1.7 kWh per mile
- Powertrain: 3 independent motors on rear axles
- Charging: Up to 60% of range in 30 minutes
- Charge Type: MCS 3.2
- Peak charging speed: 1.2MW (1,200kW)
- Drive Power: Up to 800 kW
- ePTO (Electric Power Take Off): Up to 25 kW
It is important to keep in mind that the Semi is currently spec’d for local runs, and Tesla has not yet released or developed a sleeper cabin that would be more suitable for longer trips, cross-country hauls, and overnight travel.
Tesla Semi sleeper section and large side storage teased in new video
Instead, the vehicle will be initially used for regional deliveries, as it has in the pilot programs for Pepsi Co. and Frito-Lay for the past several years.
It will enter mass production this year, Musk confirmed on X over the weekend.
Now that the company’s dedicated Semi production facility in Sparks, Nevada, is standing, the timeline seems much more realistic as the vehicle has had its mass manufacturing date adjusted on several occasions.