Connect with us

News

SpaceX’s repaired Starship booster survives back-to-back cryoproof tests

Two cryoproofs; one booster; 48 hours. (NASASpaceflight Starbase Live)

Published

on

SpaceX’s upgraded Starship booster has completed a second and third cryogenic proof test in rapid succession after undergoing repairs to fix damage suffered during the first round of testing.

Testing began almost immediately after SpaceX rolled the repaired Super Heavy booster back to the orbital launch site (OLS) on May 6th. After a quick installation on the pad’s stool-like launch mount and another day of systems checks and integration, Booster 7 charged headfirst into its first post-repair cryoproof on May 9th.

Instead of cautiously feeling out the repaired plumbing and header tank over a series of small tests, SpaceX immediately performed a full cryogenic proof (cryoproof) and filled Booster 7 to the brim with about 3000 tons (~6.6M lb) of liquid nitrogen (LN2) or a combination of LN2 and liquid oxygen (LOx). Standing about 67 meters (~220 ft) tall and 9 meters (~30 ft) wide, it took about two hours to fully fill Super Heavy’s tanks with the equivalent of one and a half Olympic swimming pools of cryogenic liquid.

As always, that liquid (well below –320°F or –196°C) rapidly chilled the booster’s 4mm (~0.16″) thick steel tanks to cryogenic temperatures, which then froze moisture directly out of the humid Texas air, coating almost all of Super Heavy’s exterior with a layer of frost and ice.

A stitch of screenshots from NASASpaceflight’s live coverage of the third Super Heavy Booster 7 cryoproof on May 11th.

SpaceX began detanking Booster 7 soon after the fill process was completed. Thanks to plenty of insulated plumbing and well-insulated ground storage tanks, SpaceX is able to recover nearly all of the LN2 and LOx used during cryoproof testing, which helps avoid the hundreds of semi-truck delivers that would otherwise be required to replenish the tank farm after even a single test.

As if to demonstrate that, SpaceX proceeded to put Booster 7 through a whole new cryogenic proof test just two days later, on May 11th. Once again, Super Heavy was fully loaded with thousands of tons of liquid nitrogen and oxygen. Unlike Cryoproof #2’s immediate detank, SpaceX – judging by the frost levels – kept Booster 7 topped off for a good hour before detanking.

Advertisement
-->

In a last-minute surprise, after fully detanking B7 at the end of Cryoproof #3, SpaceX refilled the booster’s liquid oxygen tank with a few hundred tons of LN2 or LOx. Once the rocket’s thrust section reached some degree of thermodynamic equilibrium, SpaceX remotely retracted and reconnected the orbital launch mount’s Super Heavy umbilical. The launch mount umbilical or ‘quick disconnect’ is responsible for connecting Super Heavy to the pad’s gas supplies, propellant storage, power, and communications. The test SpaceX completed after Cryoproof #3 may have been a rough simulation of one scenario Starship could easily face: a post-ignition launch abort. In other words, if an orbital Starship launch was aborted just before liftoff but after quick-disconnect retraction, could it quickly reconnect to the booster with zero human intervention?

In a scenario where a QD failed to reattach to a fully-fueled Super Heavy after a launch abort, the odds of a catastrophic fire or explosion would immediately shoot up to near-certainty. In moderate quantities, simultaneously venting gaseous methane and oxygen from the same rocket is risky but manageable. Venting hundreds – let alone thousands – of tons while trapped on the ground would amount to creating a multi-hour fuel-air bomb just waiting for a spark. Multiple Starship prototypes (SN4, SN10) have already been destroyed in part by the flammability of methane gas.

Booster 7 and the orbital launch mount quick disconnect. (NASASpaceflight – bocachicagal)
Starship SN4 exploded catastrophically after a leak developed around its umbilical panel.

Combined with the completion of two full cryogenic proof tests in less than two days, it appears that Super Heavy B7’s repairs were extremely successful. Had the first post-repair cryoproof not gone more or less perfectly, it’s hard to imagine that SpaceX would have attempted or completed an almost identical test two days later. If the second cryoproof hadn’t been nearly perfect, it’s even harder to imagine that SpaceX would have accepted the risk involved in detaching Booster 7’s umbilical during the same test window.

On May 12th, SpaceX’s main pad crane attached a lift jig to Super Heavy B7, implying that it will likely be removed from the orbital launch mount in the near future. If the repaired booster aced its tests, SpaceX’s next step would likely be Raptor engine installation and the start of static fire testing. It’s unclear if SpaceX wants to install all 33 engines at once or begin with a small handful. It’s also unclear if SpaceX will return Booster 7 to Starbase’s production facilities to finish Raptor, heat shield, grid fin, and aerocover installation.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX Starship Version 3 booster crumples in early testing

Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.

Published

on

Credit: SpaceX/X

SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory. 

Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired. 

Booster test failure

SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.

Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.

Tight deadlines

SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.

Advertisement
-->

While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.

Continue Reading

News

Tesla FSD (Supervised) is about to go on “widespread” release

In a comment last October, Elon Musk stated that FSD V14.2 is “for widespread use.”

Published

on

Tesla has begun rolling out Full Self-Driving (Supervised) V14.2, and with this, the wide release of the system could very well begin. 

The update introduces a new high-resolution vision encoder, expanded emergency-vehicle handling, smarter routing, new parking options, and more refined driving behavior, among other improvements.

FSD V14.2 improvements

FSD (Supervised) V14.2’s release notes highlight a fully upgraded neural-network vision encoder capable of reading higher-resolution features, giving the system improved awareness of emergency vehicles, road obstacles, and even human gestures. Tesla also expanded its emergency-vehicle protocols, adding controlled pull-overs and yielding behavior for police cars, fire trucks, and ambulances, among others.

A deeper integration of navigation and routing into the vision network now allows the system to respond to blocked roads or detours in real time. The update also enhances decision-making in several complex scenarios, including unprotected turns, lane changes, vehicle cut-ins, and interactions with school buses. All in all, these improvements should help FSD (Supervised) V14.2 perform in a very smooth and comfortable manner.

Elon Musk’s predicted wide release

The significance of V14.2 grows when paired with Elon Musk’s comments from October. While responding to FSD tester AI DRIVR, who praised V14.1.2 for fixing “95% of indecisive lane changes and braking” and who noted that it was time for FSD to go on wide release, Musk stated that “14.2 for widespread use.”

FSD V14 has so far received a substantial amount of positive reviews from Tesla owners, many of whom have stated that the system now drives better than some human drivers as it is confident, cautious, and considerate at the same time. With V14.2 now rolling out, it remains to be seen if the update also makes it to the company’s wide FSD fleet, which is still populated by a large number of HW3 vehicles. 

Advertisement
-->
Continue Reading

News

Tesla FSD V14.2 starts rolling out to initial batch of vehicles

It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.

Published

on

Credit: Grok Imagine

Tesla has begun pushing Full Self-Driving (Supervised) v14.2 to its initial batch of vehicles. The update was initially observed by Tesla owners and veteran FSD users on social media platform X on Friday.

So far, reports of the update have been shared by Model Y owners in California whose vehicles are equipped with the company’s AI4 hardware, though it would not be surprising if more Tesla owners across the country receive the update as well. 

Based on the release notes of the update, key improvements in FSD V14.2 include a revamped neural network for better detection of emergency vehicles, obstacles, and human gestures, as well as options to select arrival spots. 

It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.

Following are the release notes of FSD (Supervised) V14.2, as shared on X by longtime FSD tester Whole Mars Catalog.

Advertisement
-->

Release Notes

2025.38.9.5

Currently Installed

FSD (Supervised) v14.2

Full Self-Driving (Supervised) v14.2 includes:

  • Upgraded the neural network vision encoder, leveraging higher resolution features to further improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
  • Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
  • Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances.
  • Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
  • Added additional Speed Profile to further customize driving style preference.
  • Improved handling for static and dynamic gates.
  • Improved offsetting for road debris (e.g. tires, tree branches, boxes).
  • Improve handling of several scenarios including: unprotected turns, lane changes, vehicle cut-ins, and school busses.
  • Improved FSD’s ability to manage system faults and improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
  • Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
  • Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances).
  • Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
  • Added additional Speed Profile to further customize driving style preference.
  • Improved handling for static and dynamic gates.
  • Improved offsetting for road debris (e.g. tires, tree branches, boxes).
  • Improve handling of several scenarios, including unprotected turns, lane changes, vehicle cut-ins, and school buses.
  • Improved FSD’s ability to manage system faults and recover smoothly from degraded operation for enhanced reliability.
  • Added alerting for residue build-up on interior windshield that may impact front camera visibility. If affected, visit Service for cleaning!

Upcoming Improvements:

  • Overall smoothness and sentience
  • Parking spot selection and parking quality
Continue Reading