Connect with us

News

SpaceX making good progress towards Super Heavy static fire campaign

A view of Super Heavy Booster 4. Booster 7 is likely making similar progress towards full Raptor installation. (SpaceX)

Published

on

SpaceX appears to be making great progress towards the start of its first full Super Heavy static fire campaign, building upon extensive Starship testing and a single booster static fire completed in July 2021.

On May 14th, upgraded Super Heavy booster B7 was moved back to SpaceX’s South Texas Starbase Starship factory after completing a successful round of tests and smoothing out an otherwise rocky start to its life. It was not the booster’s first time on that journey: after first leaving the Starbase ‘nest’ on March 31st, Booster 7 suffered significant internal damage during a structural stress test on April 14th and was forced to return to the factory for repairs. Impressively, despite the cramped environment and extremely limited access to the interior of the Super Heavy’s primary and secondary propellant tanks, SpaceX engineers and technicians somehow completed those repairs and Booster 7 sailed through a new round of ‘cryoproof’ testing on May 9th and 11th.

In the ~20 days since its second return, SpaceX teams have been hard at work preparing Super Heavy B7 for its next major challenges – the results of which could determine whether the massive rocket helps launch a Starship into space later this year.

That goal, same as it has been for half a year, is to qualify the first Super Heavy booster for flight. To do so, SpaceX must – at long last – static fire a Super Heavy with all necessary Raptor engines installed. For Booster 7 and its near-term successors, that means 33 new “Raptor 2” engines capable of generating a total of ~7600 metric tons (~16.7M lbf) of thrust.

That’s exactly what SpaceX workers have been focused on doing since Booster 7’s second return to a Starbase assembly bay. Bit by bit, they have spent every day since installing Raptor 2 engines one at a time. Unfortunately, due to the Super Heavy’s relocation inside a brand new assembly building known as the Megabay, High Bay 2, or Wide Bay, the half-dozen or so unaffiliated photographers who have come to regularly photograph Starbase have yet to find an angle that shows the state of that engine installation progress.

Advertisement
-->
A Raptor 2 engine heads to Booster 7.

Two weeks later, it’s clear that SpaceX is taking its time, which likely also implies that the company is simultaneously encasing Booster 7’s Raptors and engine section in shrouds that will protect them during static fire testing; as well as during launch, reentry, and landing if B7 makes it that far. That’s not guaranteed, however, and it could also simply be that installing 33 engines on the first attempt at installing any Raptor 2s on any rocket has proven much harder than expected.

On June 1st, CEO Elon Musk appeared to confirm that engines are still being installed on Super Heavy B7, but he also verified that “all Raptor 2 engines needed for [the] first orbital flight are complete.” That could include Starship S24, which needs three sea-level Raptor 2s and three vacuum-optimized Raptor 2s, but it’s still great news even if he only means it for Booster 7. SpaceX has been spotted delivering at least a handful of new Raptor 2 engines a week for the last month or two, which means that all 33 engines may already be onsite at Starbase. If some are still undergoing proof testing at SpaceX’s McGregor, Texas facilities, it could be a few more weeks before all necessary engines are onsite, but that milestone is likely close at hand if it hasn’t already been reached.

For Super Heavy Booster 4, which was inexplicably never static-fired, installation of all 29 of its Raptor 1 engines took just a few days, but the installation of a heat shield around those engines took at least a few weeks. On June 1st, SpaceX also began installing grid fins on Super Heavy B7, further indicating the company’s growing confidence in the booster.

Outside of booster outfitting, SpaceX has also been aggressively refilling the Starbase orbital launch site’s (OLS) massive tank farm, which is capable of storing, subcooling, and distributing thousands of tons of liquid oxygen (LOx), liquid methane (LCH4), liquid nitrogen (LN2), and a variety of gases. For a full wet dress rehearsal (WDR), which has also never been done with Super Heavy, SpaceX would need to fill the booster with around 3400 tons (7.5M lb) of propellant. Out of an abundance of caution, Super Heavy B7 will likely have far less propellant aboard during almost all of its static fire tests, but a full static fire with a full load of propellant – simulating most prelaunch conditions – will likely be one of the last main goals of any static fire campaign. At full thrust, 33 Raptor 2 engines will likely burn around 25 tons (~55,000 lb) of propellant per second, so a huge amount of propellant will be needed regardless.

In the same series of June 1st tweets, Musk also confirmed that SpaceX intends to proceed cautiously into its first true Super Heavy static fire campaign, testing engines “just one at a time at first.” Musk probably isn’t being literal, as a campaign in which Booster 7 tested every one of its 33 Raptors individually could easily take weeks, so it’s likely safe to interpret his words to mean that SpaceX is not going to leap straight from the first limited test of one or a few engines to all 13 center engines, all 20 outer ‘boost’ engines, or all 33 engines at once.

Advertisement
-->

Almost three weeks into the process of engine and heat shield installation, Booster 7 could potentially be ready to return to the orbital launch site any day now, though there’s probably an equal chance that it’s still a few weeks away. Nonetheless, SpaceX is on the cusp of kicking off one of the most exciting and important test campaigns in the history of Starship.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Starlink passes 9 million active customers just weeks after hitting 8 million

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

Published

on

Credit: Starlink/X

SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark. 

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

9 million customers

In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day. 

“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote. 

That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.

Advertisement
-->

Starlink’s momentum

Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.

Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future. 

Continue Reading

News

NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.

Published

on

Credit: Grok Imagine

NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”

Jim Fan’s hands-on FSD v14 impressions

Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14

“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X. 

Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”

Advertisement
-->

The Physical Turing Test

The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning. 

This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.

Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.

Continue Reading

News

Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1

The update was released just a day after FSD v14.2.2 started rolling out to customers. 

Published

on

Credit: Grok

Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers. 

Tesla owner shares insights on FSD v14.2.2.1

Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.

Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.

“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.

Tesla’s FSD v14.2.2 update

Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.

Advertisement
-->

New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.

Continue Reading