Connect with us

News

SpaceX making good progress towards Super Heavy static fire campaign

A view of Super Heavy Booster 4. Booster 7 is likely making similar progress towards full Raptor installation. (SpaceX)

Published

on

SpaceX appears to be making great progress towards the start of its first full Super Heavy static fire campaign, building upon extensive Starship testing and a single booster static fire completed in July 2021.

On May 14th, upgraded Super Heavy booster B7 was moved back to SpaceX’s South Texas Starbase Starship factory after completing a successful round of tests and smoothing out an otherwise rocky start to its life. It was not the booster’s first time on that journey: after first leaving the Starbase ‘nest’ on March 31st, Booster 7 suffered significant internal damage during a structural stress test on April 14th and was forced to return to the factory for repairs. Impressively, despite the cramped environment and extremely limited access to the interior of the Super Heavy’s primary and secondary propellant tanks, SpaceX engineers and technicians somehow completed those repairs and Booster 7 sailed through a new round of ‘cryoproof’ testing on May 9th and 11th.

In the ~20 days since its second return, SpaceX teams have been hard at work preparing Super Heavy B7 for its next major challenges – the results of which could determine whether the massive rocket helps launch a Starship into space later this year.

That goal, same as it has been for half a year, is to qualify the first Super Heavy booster for flight. To do so, SpaceX must – at long last – static fire a Super Heavy with all necessary Raptor engines installed. For Booster 7 and its near-term successors, that means 33 new “Raptor 2” engines capable of generating a total of ~7600 metric tons (~16.7M lbf) of thrust.

That’s exactly what SpaceX workers have been focused on doing since Booster 7’s second return to a Starbase assembly bay. Bit by bit, they have spent every day since installing Raptor 2 engines one at a time. Unfortunately, due to the Super Heavy’s relocation inside a brand new assembly building known as the Megabay, High Bay 2, or Wide Bay, the half-dozen or so unaffiliated photographers who have come to regularly photograph Starbase have yet to find an angle that shows the state of that engine installation progress.

Advertisement
-->
A Raptor 2 engine heads to Booster 7.

Two weeks later, it’s clear that SpaceX is taking its time, which likely also implies that the company is simultaneously encasing Booster 7’s Raptors and engine section in shrouds that will protect them during static fire testing; as well as during launch, reentry, and landing if B7 makes it that far. That’s not guaranteed, however, and it could also simply be that installing 33 engines on the first attempt at installing any Raptor 2s on any rocket has proven much harder than expected.

On June 1st, CEO Elon Musk appeared to confirm that engines are still being installed on Super Heavy B7, but he also verified that “all Raptor 2 engines needed for [the] first orbital flight are complete.” That could include Starship S24, which needs three sea-level Raptor 2s and three vacuum-optimized Raptor 2s, but it’s still great news even if he only means it for Booster 7. SpaceX has been spotted delivering at least a handful of new Raptor 2 engines a week for the last month or two, which means that all 33 engines may already be onsite at Starbase. If some are still undergoing proof testing at SpaceX’s McGregor, Texas facilities, it could be a few more weeks before all necessary engines are onsite, but that milestone is likely close at hand if it hasn’t already been reached.

For Super Heavy Booster 4, which was inexplicably never static-fired, installation of all 29 of its Raptor 1 engines took just a few days, but the installation of a heat shield around those engines took at least a few weeks. On June 1st, SpaceX also began installing grid fins on Super Heavy B7, further indicating the company’s growing confidence in the booster.

Outside of booster outfitting, SpaceX has also been aggressively refilling the Starbase orbital launch site’s (OLS) massive tank farm, which is capable of storing, subcooling, and distributing thousands of tons of liquid oxygen (LOx), liquid methane (LCH4), liquid nitrogen (LN2), and a variety of gases. For a full wet dress rehearsal (WDR), which has also never been done with Super Heavy, SpaceX would need to fill the booster with around 3400 tons (7.5M lb) of propellant. Out of an abundance of caution, Super Heavy B7 will likely have far less propellant aboard during almost all of its static fire tests, but a full static fire with a full load of propellant – simulating most prelaunch conditions – will likely be one of the last main goals of any static fire campaign. At full thrust, 33 Raptor 2 engines will likely burn around 25 tons (~55,000 lb) of propellant per second, so a huge amount of propellant will be needed regardless.

In the same series of June 1st tweets, Musk also confirmed that SpaceX intends to proceed cautiously into its first true Super Heavy static fire campaign, testing engines “just one at a time at first.” Musk probably isn’t being literal, as a campaign in which Booster 7 tested every one of its 33 Raptors individually could easily take weeks, so it’s likely safe to interpret his words to mean that SpaceX is not going to leap straight from the first limited test of one or a few engines to all 13 center engines, all 20 outer ‘boost’ engines, or all 33 engines at once.

Advertisement
-->

Almost three weeks into the process of engine and heat shield installation, Booster 7 could potentially be ready to return to the orbital launch site any day now, though there’s probably an equal chance that it’s still a few weeks away. Nonetheless, SpaceX is on the cusp of kicking off one of the most exciting and important test campaigns in the history of Starship.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

GM CEO Mary Barra says she told Biden to give Tesla and Musk EV credit

“He was crediting me, and I said, ‘Actually, I think a lot of that credit goes to Elon and Tesla…You know me, Andrew. I don’t want to take credit for things.”

Published

on

General Motors CEO Mary Barra said in a new interview on Wednesday that she told President Joe Biden to credit Tesla and its CEO, Elon Musk, for the widespread electric vehicle transition.

She said she told Biden this after the former President credited her and GM for leading EV efforts in the United States.

During an interview at the New York Times Dealbook Summit with Andrew Ross Sorkin, Barra said she told Biden that crediting her was essentially a mistake, and that Musk and Tesla should have been explicitly mentioned (via Business Insider):

“He was crediting me, and I said, ‘Actually, I think a lot of that credit goes to Elon and Tesla…You know me, Andrew. I don’t want to take credit for things.”

Back in 2021, President Biden visited GM’s “Factory Zero” plant in Detroit, which was the centerpiece of the company’s massive transition to EVs. The former President went on to discuss the EV industry, and claimed that GM and Barra were the true leaders who caused the change:

“In the auto industry, Detroit is leading the world in electric vehicles. You know how critical it is? Mary, I remember talking to you way back in January about the need for America to lead in electric vehicles. I can remember your dramatic announcement that by 2035, GM would be 100% electric. You changed the whole story, Mary. You did, Mary. You electrified the entire automotive industry. I’m serious. You led, and it matters.”

People were baffled by the President’s decision to highlight GM and Barra, and not Tesla and Musk, who truly started the transition to EVs. GM, Ford, and many other companies only followed in the footsteps of Tesla after it started to take market share from them.

Elon Musk and Tesla try to save legacy automakers from Déjà vu

Musk would eventually go on to talk about Biden’s words later on:

They have so much power over the White House that they can exclude Tesla from an EV Summit. And, in case the first thing, in case that wasn’t enough, then you have President Biden with Mary Barra at a subsequent event, congratulating Mary for having led the EV revolution.”

In Q4 2021, which was shortly after Biden’s comments, Tesla delivered 300,000 EVs. GM delivered just 26.

Continue Reading

News

Tesla Full Self-Driving shows confident navigation in heavy snow

So far, from what we’ve seen, snow has not been a huge issue for the most recent Full Self-Driving release. It seems to be acting confidently and handling even snow-covered roads with relative ease.

Published

on

Credit: Grok

Tesla Full Self-Driving is getting its first taste of Winter weather for late 2025, as snow is starting to fall all across the United States.

The suite has been vastly improved after Tesla released v14 to many owners with capable hardware, and driving performance, along with overall behavior, has really been something to admire. This is by far the best version of FSD Tesla has ever released, and although there are a handful of regressions with each subsequent release, they are usually cleared up within a week or two.

Tesla is releasing a modified version of FSD v14 for Hardware 3 owners: here’s when

However, adverse weather conditions are something that Tesla will have to confront, as heavy rain, snow, and other interesting situations are bound to occur. In order for the vehicles to be fully autonomous, they will have to go through these scenarios safely and accurately.

One big issue I’ve had, especially in heavy rain, is that the camera vision might be obstructed, which will display messages that certain features’ performance might be degraded.

So far, from what we’ve seen, snow has not been a huge issue for the most recent Full Self-Driving release. It seems to be acting confidently and handling even snow-covered roads with relative ease:

Moving into the winter months, it will be very interesting to see how FSD handles even more concerning conditions, especially with black ice, freezing rain and snow mix, and other things that happen during colder conditions.

We are excited to test it ourselves, but I am waiting for heavy snowfall to make it to Pennsylvania so I can truly push it to the limit.

Continue Reading

News

Tesla hosts Rome Mayor for first Italian FSD Supervised road demo

The event marked the first time an Italian mayor tested the advanced driver-assistance system in person in Rome’s urban streets.

Published

on

Credit: @andst7/X

Tesla definitely seems to be actively engaging European officials on FSD’s capabilities, with the company hosting Rome Mayor Roberto Gualtieri and Mobility Assessor Eugenio Patanè for a hands-on road demonstration. 

The event marked the first time an Italian mayor tested the advanced driver-assistance system in person in Rome’s urban streets. This comes amid Tesla’s push for FSD’s EU regulatory approvals in the coming year.

Rome officials experience FSD Supervised

Tesla conducted the demo using a Model 3 equipped with Full Self-Driving (Supervised), tackling typical Roman traffic including complex intersections, roundabouts, pedestrian crossings and mixed users like cars, bikes and scooters.

The system showcased AI-based assisted driving, prioritizing safety while maintaining flow. FSD also handled overtakes and lane decisions, though with constant driver supervision.

Investor Andrea Stroppa detailed the event on X, noting the system’s potential to reduce severe collision risks by up to seven times compared to traditional driving, based on Tesla’s data from billions of global fleet miles. The session highlighted FSD’s role as an assistance tool in its Supervised form, not a replacement, with the driver fully responsible at all times.

Advertisement
-->

Path to European rollout

Tesla has logged over 1 million kilometers of testing across 17 European countries, including Italy, to refine FSD for local conditions. The fact that Rome officials personally tested FSD Supervised bodes well for the program’s approval, as it suggests that key individuals are closely watching Tesla’s efforts and innovations.

Assessor Patanè also highlighted the administration’s interest in technologies that boost road safety and urban travel quality, viewing them as aids for both private and public transport while respecting rules.

Replies on X urged involving Italy’s Transport Ministry to speed approvals, with one user noting, “Great idea to involve the mayor! It would be necessary to involve components of the Ministry of Transport and the government as soon as possible: it’s they who can accelerate the approval of FSD in Italy.”

Continue Reading