

News
SpaceX begins stress-testing upgraded Super Heavy booster
In a what is likely a prelude to engine installation, SpaceX has begun stress-testing an upgraded Super Heavy booster prototype.
Known as Super Heavy Booster 7 or B7, the prototype is the first of its kind designed to support up to 33 new Raptor V2 engines – each potentially capable of producing up to 230 tons (~510,000 lbf) of thrust at liftoff. Even with just 20 such engines installed, Super Heavy – measuring around 69 meters (~225 ft) tall and nine meters (~30 ft) wide – will be the largest and most powerful rocket stage ever tested. That potentially unprecedented power is why SpaceX has custom-built a complex structural test stand to explore Super Heavy’s true performance envelope in a slightly less risky manner.
In the second half of 2021, that structural test stand briefly tested an unusual half-Starship, half-Super Heavy test tank with a nine-engine thrust section (‘puck’) and later compressed a different test tank until its reinforced steel skin buckled. In the interim, SpaceX removed its nine-ram setup and modified the stand to support 13 rams, guaranteeing that its new purpose was to test Super Heavy’s new 13-engine thrust section. Prior to Booster 7, all Super Heavy prototypes have had a similar nine-engine puck and an outer ring of 20 engines that would attach directly to the rim of each booster’s cylindrical body.
Increasing the central engine count from 9 to 13 was already certain to up the amount of stress future Super Heavy thrust pucks would need to survive by almost 45%. But combined with Raptor V2’s thrust increases, Super Heavy Booster 7’s thrust puck could actually be subjected to at least 80% more thrust at liftoff. Altogether, Super Heavy B7’s 33 engines should be able to produce ~7600 tons (~16.8M lbf) of thrust compared to Super Heavy B4’s ~5400 tons (~11.9M lbf). As a result, though it’s odd that SpaceX never did significantly test Booster 4, it’s no surprise that the company chose to give Booster 7 priority as soon it was ready.
After a few false starts and at least one ‘pneumatic proof test’ that likely saw Booster 7 pressurized with benign nitrogen gas, SpaceX began stress-testing the upgraded Super Heavy in earnest on April 14th. First, the booster was filled about a third of the way with roughly 1000 tons (~2.2M lb) of liquid nitrogen (LN2) or a combination of liquid oxygen (LOx) and LN2. Once the rocket was fully chilled, there were clear signs of some kind of added stress as large sheets of ice that had formed on the side of B7’s skin broke apart and fell off.
Only ice close to Super Heavy’s base was visibly disturbed, increasing the odds that the behavior was a sign of some or all of the structural test stand’s hydraulic rams simulating Raptor engines. It’s also possible that the stress was caused by pressurizing Super Heavy’s tanks to the point that they began to appreciably deform, though that type of testing is far harder to differentiate. Without official comments, it’s unfortunately impossible to ever know what exactly SpaceX is testing or how successful those tests are when the structural test stand is involved.
Nonetheless, it’s likely that Booster 7 isn’t done with the stand just yet. SpaceX could benefit from just about any data gathered about the performance of Super Heavy’s new thrust puck during simulated Raptor startup, throttling, and shutdown both at liftoff and during boostback and landing burns. SpaceX might also want to simulate engine-out scenarios that would result in asymmetric thrust.
Assuming Booster 7 survives this particular series of tests and SpaceX is happy with its performance on the structural test stand, the upgraded Super Heavy could be ready for Raptor installation and integrated wet dress rehearsal and static fire testing in the near future. SpaceX began delivering upgraded Raptors V2 engines to Starbase in late March.
News
Tesla Model 3 gets perfect 5-star Euro NCAP safety rating
Tesla prides itself on producing some of the safest vehicles on the road today.

Tesla prides itself on producing some of the safest vehicles on the road today. Based on recent findings from the Euro NCAP, the 2025 Model 3 sedan continues this tradition, with the vehicle earning a 5-star overall safety rating from the agency.
Standout Safety Features
As could be seen on the Euro NCAP’s official website, the 2025 Model 3 achieved an overall score of 90% for Adult Occupants, 93% for Child Occupants, 89% for Vulnerable Road Users, and 87% for Safety Assist. This rating, as per the Euro NCAP, applies to the Model 3 Rear Wheel Drive, Long Range Rear Wheel Drive, Long Range All Wheel Drive, and Performance All Wheel Drive.
The Euro NCAP highlighted a number of the Model 3’s safety features, such as its Active Hood, which automatically lifts during collisions to mitigate injury risks to vulnerable road users, and Automatic Emergency Braking System, which now detects motorcycles through an upgraded algorithm. The Euro NCAP also mentioned the Model 3’s feature that prevents initial door opening if someone is approaching the vehicle’s blind spot.
Standout Safety Features
In a post on its official Tesla Europe & Middle East account, Tesla noted that the company is also introducing new features that make the Model 3 even safer than it is today. These include functions like head-on collision avoidance and crossing traffic AEB, as well as Child Left Alone Detection, among other safety features.
“We also introduced new features to improve Safety Assist functionality even further – like head-on collision avoidance & crossing traffic AEB – to detect & respond to potential hazards faster, helping avoid accidents in the first place.
“Lastly, we released Child Left Alone Detection – if an unattended child is detected, the vehicle will turn on HVAC & alert caregivers via phone app & the vehicle itself (flashing lights/audible alert). Because we’re using novel in-cabin radar sensing, your Tesla is able to distinguish between adult vs child – reduced annoyance to adults, yet critical safety feature for kids,” Tesla wrote in its post on X.
Below is the Euro NCAP’s safety report on the 2025 Tesla Model 3 sedan.
Euroncap 2025 Tesla Model 3 Datasheet by Simon Alvarez on Scribd
Elon Musk
USDOT Secretary visits Tesla Giga Texas, hints at national autonomous vehicle standards
The Transportation Secretary also toured the factory’s production lines and spoke with CEO Elon Musk.

United States Department of Transportation (USDOT) Secretary Sean Duffy recently visited Tesla’s Gigafactory Texas complex, where he toured the factory’s production lines and spoke with CEO Elon Musk. In a video posted following his Giga Texas visit, Duffy noted that he believes there should be a national standard for autonomous vehicles in the United States.
Duffy’s Giga Texas Visit
As could be seen in videos of his Giga Texas visit, the Transportation Secretary seemed to appreciate the work Tesla has been doing to put the United States in the forefront of innovation. “Tesla is one of the many companies helping our country reach new heights. USDOT will be right there all the way to make sure Americans stay safe,” Duffy wrote in a post on X.
He also praised Tesla for its autonomous vehicle program, highlighting that “We need American companies to keep innovating so we can outcompete the rest of the world.”
National Standard
While speaking with Tesla CEO Elon Musk, the Transportation Secretary stated that other autonomous ride-hailing companies have been lobbying for a national standard for self-driving cars. Musk shared the sentiment, stating that “It’d be wonderful for the United States to have a national set of rules for autonomous driving as opposed to 50 independent sets of rules on a state-by-state rules basis.”
Duffy agreed with the CEO’s point, stating that, “You can’t have 50 different rules for 50 different states. You need one standard.” He also noted that the Transportation Department has asked autonomous vehicle companies to submit data. By doing so, the USDOT could develop a standard for the entire United States, allowing self-driving cars to operate in a manner that is natural and safe.
News
Tesla posts Optimus’ most impressive video demonstration yet
The humanoid robot was able to complete all the tasks through a single neural network.

When Elon Musk spoke with CNBC’s David Faber in an interview at Giga Texas, he reiterated the idea that Optimus will be one of Tesla’s biggest products. Seemingly to highlight the CEO’s point, the official Tesla Optimus account on social media platform X shared what could very well be the most impressive demonstration of the humanoid robot’s capabilities to date.
Optimus’ Newest Demonstration
In its recent video demonstration, the Tesla Optimus team featured the humanoid robot performing a variety of tasks. These include household chores such as throwing the trash, using a broom and a vacuum cleaner, tearing a paper towel, stirring a pot of food, opening a cabinet, and closing a curtain, among others. The video also featured Optimus picking up a Model X fore link and placing it on a dolly.
What was most notable in the Tesla Optimus team’s demonstration was the fact that the humanoid robot was able to complete all the tasks through a single neural network. The robot’s actions were also learned directly from Optimus being fed data from first-person videos of humans performing similar tasks. This system should pave the way for Optimus to learn and refine new skills quickly and reliably.
Tesla VP for Optimus Shares Insight
In a follow-up post on X, Tesla Vice President of Optimus (Tesla Bot) Milan Kovac stated that one of the team’s goals is to have Optimus learn straight from internet videos of humans performing tasks, including footage captured in third person or by random cameras.
“We recently had a significant breakthrough along that journey, and can now transfer a big chunk of the learning directly from human videos to the bots (1st person views for now). This allows us to bootstrap new tasks much faster compared to teleoperated bot data alone (heavier operationally).
“Many new skills are emerging through this process, are called for via natural language (voice/text), and are run by a single neural network on the bot (multi-tasking). Next: expand to 3rd person video transfer (aka random internet), and push reliability via self-play (RL) in the real-, and/or synthetic- (sim / world models) world,” Kovac wrote in his post on X.
-
News2 weeks ago
Tesla Cybertruck Range Extender gets canceled
-
Elon Musk6 days ago
Tesla seems to have fixed one of Full Self-Driving’s most annoying features
-
Lifestyle2 weeks ago
Anti-Elon Musk group crushes Tesla Model 3 with Sherman tank–with unexpected results
-
News2 weeks ago
Starlink to launch on United Airlines planes by May 15
-
News2 weeks ago
Tesla Semi gets new adoptee in latest sighting
-
News2 weeks ago
Tesla launches its most inexpensive trim of new Model Y
-
News2 weeks ago
US’ base Tesla Model Y has an edge vs Shanghai and Berlin’s entry-level Model Ys
-
News2 weeks ago
Tesla Cybertruck owners get amazing year-long freebie