Connect with us

News

SpaceX set for third Falcon Heavy launch: here’s how to watch live

The first Falcon Heavy Block 5 rocket lifts off from Pad 39A on April 11th. Both side boosters will be reused on Flight 3, also known as STP-2. (Pauline Acalin)

Published

on

SpaceX is T-18 hours to its second Falcon Heavy launch in barely 70 days, set to lift off with the Department of Defense’s Space Test Program-2 (STP-2) rideshare mission no earlier than (NET) 11:30 pm EDT (03:30 UTC), June 24th.

According to SpaceX CEO Elon Musk, STP-2 is without a doubt the company’s “most difficult launch ever”, owing to a multitude of high-stakes performance requirements, US military and NASA oversight, several technical milestones, challenging booster and fairing recoveries, and much, much more. Should SpaceX succeed on all fronts, the company will have taken a massive leap towards being able to offer competitive launch services that can fulfill all of the US government’s many different spaceflight needs.

Prelaunch Appetizers ???

Challenges all the way down

Likely the single most challenging aspect of STP-2 is the performance the mission’s Falcon 9 upper stage will have to deliver. SpaceX describes the challenge below:

“[The STP-2 mission] will deliver 24 satellites to space on the DoD’s first-ever SpaceX Falcon Heavy launch. [It] will be among the most challenging launches in SpaceX history, with four separate upper-stage engine burns, three separate deployment orbits, a final propulsive passivation maneuver, and a total mission duration of over six hours.”
SpaceX.com/STP-2

According to older USAF documents (STP-2’s original launch target was mid-2015), those numbers could actually rise as high as five separate upper-stage Merlin Vacuum burns and a mission duration of more than 7.5 hours. Given the last-second decision to move Falcon Heavy’s center core recovery from ~40 km offshore to more than 1240 km offshore, it’s fairly likely that five burns and 7.5 hours will be closer to the reality of STP-2. In short, the center core will move from a gentle recovery to what will probably be SpaceX’s hottest and hardest booster recovery ever to transfer as much margin as possible to STP-2’s upper stage.

Falcon Heavy’s upper stage discards its payload fairing to prepare the STP-2 payload stack for deployment. (SpaceX)

With regard to that extra spicy reentry, Falcon Heavy center core B1057 – the second Block 5 center core built by SpaceX – is now expected to attempt a landing aboard drone ship Of Course I Still Love You (OCISLY) more than 1240 km (770 mi) off the coast of Florida, potentially smashing the current record of ~970 km (600 mi).

At the same time, fairing recovery vessel GO Ms. Tree (formerly Mr. Steven; renamed due to change in ownership) is steaming hard, heading anywhere from 1400-1600 km into the Atlantic Ocean. Falcon Heavy STP-2 will be the vessel’s first attempted fairing catch since December 3rd, 2018, nearly seven months ago. It will likely crush the previous record for most distant fairing recovery attempt by 50% or more. Whether or not the vessel succeeds and catches its first Falcon fairing(s) ever, it’s exciting to see Ms. Tree (Mr. Steven) out and about for a fairing recovery after months of inactivity.

Falcon Heavy Flight 2. The booster in the middle - B1055 - was effectively sheared in half after tipping over aboard drone ship OCISLY. (Pauline Acalin)
Falcon Heavy Flight 2 readies for launch with three Block 5 boosters; B1052, B1053, and center core B1055. (Pauline Acalin)

As always, SpaceX will host an official Falcon Heavy STP-2 livestream, beginning around T-15 minutes and likely lasting at least 1-2 hours as the rocket’s upper stage prepares for a ~7.5-hour orbital marathon.

Want to remember the awesomeness of Falcon Heavy every single day? Consider a limited-edition set of high-quality prints, signed by both Teslarati photographers to commemorate the rocket’s inaugural Starman launch.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla rolls out new Supercharging safety feature in the U.S.

Published

on

tesla's nacs charging connector
Credit: Tesla

Tesla has rolled out a new Supercharging safety feature in the United States, one that will answer concerns that some owners may have if they need to leave in a pinch.

It is also a suitable alternative for non-Tesla chargers, like third-party options that feature J1772 or CCS to NACS adapters.

The feature has been available in Europe for some time, but it is now rolling out to Model 3 and Model Y owners in the U.S.

With Software Update 2026.2.3, Tesla is launching the Unlatching Charge Cable function, which will now utilize the left rear door handle to release the charging cable from the port. The release notes state:

“Charging can now be stopped and the charge cable released by pulling and holding the rear left door handle for three seconds, provided the vehicle is unlocked, and a recognized key is nearby. This is especially useful when the charge cable doesn’t have an unlatch button. You can still release the cable using the vehicle touchscreen or the Tesla app.”

The feature was first spotted by Not a Tesla App.

This is an especially nice feature for those who commonly charge at third-party locations that utilize plugs that are not NACS, which is the Tesla standard.

For example, after plugging into a J1772 charger, you will still be required to unlock the port through the touchscreen, which is a minor inconvenience, but an inconvenience nonetheless.

Additionally, it could be viewed as a safety feature, especially if you’re in need of unlocking the charger from your car in a pinch. Simply holding open the handle on the rear driver’s door will now unhatch the port from the car, allowing you to pull it out and place it back in its housing.

This feature is currently only available on the Model 3 and Model Y, so Model S, Model X, and Cybertruck owners will have to wait for a different solution to this particular feature.

Continue Reading

News

LG Energy Solution pursuing battery deal for Tesla Optimus, other humanoid robots: report

Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.

Published

on

Credit: Tesla Optimus/X

A recent report has suggested that LG Energy Solution is in discussions to supply batteries for Tesla’s Optimus humanoid robot.

Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.

Humanoid robot battery deals

LG Energy Solution shares jumped more than 11% on the 28th after a report from the Korea Economic Daily claimed that the company is pursuing battery supply and joint development agreements with several humanoid robot makers. These reportedly include Tesla, which is developing Optimus, as well as multiple Chinese robotics companies.

China is already home to several leading battery manufacturers, such as CATL and BYD, making the robot makers’ reported interest in LG Energy Solution quite interesting. Market participants interpreted the reported outreach as a signal that performance requirements for humanoid robots may favor battery chemistries developed by companies like LG.

LF Energy Solution vs rivals

According to the report, energy density is believed to be the primary reason humanoid robot developers are evaluating LG Energy Solution’s batteries. Unlike electric vehicles, humanoid robots have significantly less space available for battery packs while requiring substantial power to operate dozens of joint motors and onboard artificial intelligence processors.

LG Energy Solution’s ternary lithium batteries offer higher energy density compared with rivals’ lithium iron phosphate (LFP) batteries, which are widely used by Chinese EV manufacturers. That advantage could prove critical for humanoid robots, where runtime, weight, and compact packaging are key design constraints.

Continue Reading

News

Tesla receives approval for FSD Supervised tests in Sweden

Tesla confirmed that it has been granted permission to test FSD Supervised vehicles across Sweden in a press release.

Published

on

Credit: Grok Imagine

Tesla has received regulatory approval to begin tests of its Full Self-Driving Supervised system on public roads in Sweden, a notable step in the company’s efforts to secure FSD approval for the wider European market. 

FSD Supervised testing in Sweden

Tesla confirmed that it has been granted permission to test FSD Supervised vehicles across Sweden following cooperation with national authorities and local municipalities. The approval covers the Swedish Transport Administration’s entire road network, as well as urban and highways in the Municipality of Nacka.

Tesla shared some insights into its recent FSD approvals in a press release. “The approval shows that cooperation between authorities, municipalities and businesses enables technological leaps and Nacka Municipality is the first to become part of the transport system of the future. The fact that the driving of the future is also being tested on Swedish roads is an important step in the development towards autonomy in real everyday traffic,” the company noted. 

With approval secured for FSD tests, Tesla can now evaluate the system’s performance in diverse environments, including dense urban areas and high-speed roadways across Sweden, as noted in a report from Allt Om Elbil. Tesla highlighted that the continued development of advanced driver assistance systems is expected to pave the way for improved traffic safety, increased accessibility, and lower emissions, particularly in populated city centers.

Tesla FSD Supervised Europe rollout

FSD Supervised is already available to drivers in several global markets, including Australia, Canada, China, Mexico, New Zealand, and the United States. The system is capable of handling city and highway driving tasks such as steering, acceleration, braking, and lane changes, though it still requires drivers to supervise the vehicle’s operations.

Tesla has stated that FSD Supervised has accumulated extensive driving data from its existing markets. In Europe, however, deployment remains subject to regulatory approval, with Tesla currently awaiting clearance from relevant authorities.

The company reiterated that it expects to start rolling out FSD Supervised to European customers in early 2026, pending approvals. It would then be unsurprising if the company secures approvals for FSD tests in other European territories in the coming months. 

Continue Reading