Connect with us

News

SpaceX’s upgraded Starship completes second Raptor engine test in ~24 hours

SpaceX has fired up Starship SN15 for the second time in ~24 hours. (NASASpaceflight.com)

Published

on

SpaceX Starship prototype SN15 has completed a second ‘static fire’ test of its Raptor engines in the last 24 hours, hopefully setting up the rocket for a launch and landing attempt on Thursday or Friday.

While Monday’s test was a total success, it’s unclear if April 27th’s static fire went according to plan. Notably, it was much shorter than the Monday engine test and involved either one or two – but not all three – of Starship SN15’s Raptor engines. Historically, unusually brief static fires (~2-3 seconds) aren’t unprecedented, but they’ve generally been part of a process of troubleshooting after a prototype runs into technical issues during earlier testing.

According to Musk, SpaceX also moved to reigniting all three sea level Raptors for landing burns from Starship SN10 onwards, meaning that an intentional two-engine SN15 static fire is either a reversion to earlier two-engine landing burns or a sign of a static fire abort or engine ignition failure. If SpaceX needs to perform another test, particularly if one or more Raptors need to be replaced, Starship SN15’s launch will likely slip into early May. Stay tuned for updates.

SpaceX CEO Elon Musk says that the next Starship launch could happen “later this week” after the company’s first ‘upgraded’ prototype aced a three-engine static fire test on the first try.

Advertisement

While substantially delayed from optimistic initial targets just a week or two after the rocket rolled from factory to launch pad, upgraded Starship prototype serial number 15 (SN15) – outfitted with “hundreds of improvements” – fired up its three Raptor engines for a few seconds around 5pm CDT on Monday, April 26th. Also upgraded, the rocket’s engines seemed to perform nominally and SpaceX ultimately closed out the evening’s testing a few hours early.

Around the same time as SN15’s first static fire attempt was wrapping up, SpaceX distributed safety notices to Boca Chica Village residents, indicating that a second static fire test may be planned on Tuesday. Musk didn’t mention plans for a second static fire, but he did imply that the first test was completed successfully enough to enable Starship SN15 to launch just a few days from now.

Like four other “high-altitude” flight tests before it, Starship SN15 is expected to target a similar ~10-12 kilometer (6-8 mi) apogee and once again attempt to perform a complete ascent, controlled bellyflop, landing flip maneuver, and soft touchdown. Between December 2020 and April 2021, Starships SN8 through SN11 tried and failed to survive that challenge intact, though prototype SN10 did manage to survive for around ten minutes on the ground before its still-hard landing led to an explosion.

All four failures ultimately had different causes. Starship SN8 lost fuel tank pressure, starving its Raptors and causing a near-total loss of thrust seconds before touchdown. One of SN9’s Raptors failed to ignite for a landing burn, triggering an even more aggressive impact with the ground. Starship SN10 landed in one piece but its lone landing engine underperformed when it began to ingest helium ullage gas – a quick-fix implemented after SN8’s pressurization issue. SN11 exploded almost immediately after attempting to ignite its three engines for landing, failing even earlier than its predecessors.

Advertisement

All four flight tests saw each respective Starship prototypes narrowly miss a fully successful and survivable landing, providing SpaceX a great deal of data and direct experience to improve the rocket’s design and operations with. Two of the four failures – SN9 and SN11 – appear to have been the fault of one or more of Starship’s three Raptor engines. Beginning with Starship SN15, SpaceX has moved to an upgraded iteration of the next-generation engine, raising hopes that whatever changes the company has implemented will substantially improve reliability and thus the odds of a successful high-altitude launch and landing test.

As of April 26th and in spite of one or two weeks of delays, the fact that Starship SN15 managed to complete a three-Raptor static fire test on its first true attempt is a great sign that the rocket’s many “improvements” may already be paying dividends. A launch “later this week” would make the effects of those improvements even harder to deny. A successful launch and landing in the next few days would all but guarantee that SpaceX’s process of iterative development is working like a charm. Regardless of whether SN15 survives its first flight, Starship SN16 will likely be ready to take over a matter of days later.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)

Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Published

on

SpaceX's first Falcon Heavy launch also happened to be a strategic and successful test of Falcon upper stage coast capabilities. (SpaceX)

When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.

At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.

The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.

Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Advertisement
Credit: SpaceX

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.

And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.

SpaceX’s trajectory has been just as dramatic.

The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon Heavy successfully clears the tower after its maiden launch, February 6, 2018. (Tom Cross)

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.

Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.

Advertisement

And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.

In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.

The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Advertisement
Continue Reading

Energy

Tesla launches Cybertruck vehicle-to-grid program in Texas

The initiative was announced by the official Tesla Energy account on social media platform X.

Published

on

Credit: Tesla

Tesla has launched a vehicle-to-grid (V2G) program in Texas, allowing eligible Cybertruck owners to send energy back to the grid during high-demand events and receive compensation on their utility bills. 

The initiative, dubbed Powershare Grid Support, was announced by the official Tesla Energy account on social media platform X.

Texas’ Cybertruck V2G program

In its post on X, Tesla Energy confirmed that vehicle-to-grid functionality is “coming soon,” starting with select Texas markets. Under the new Powershare Grid Support program, owners of the Cybertruck equipped with Powershare home backup hardware can opt in through the Tesla app and participate in short-notice grid stress events.

During these events, the Cybertruck automatically discharges excess energy back to the grid, supporting local utilities such as CenterPoint Energy and Oncor. In return, participants receive compensation in the form of bill credits. Tesla noted that the program is currently invitation-only as part of an early adopter rollout.

Advertisement

The launch builds on the Cybertruck’s existing Powershare capability, which allows the vehicle to provide up to 11.5 kW of power for home backup. Tesla added that the program is expected to expand to California next, with eligibility tied to utilities such as PG&E, SCE, and SDG&E.

Powershare Grid Support

To participate in Texas, Cybertruck owners must live in areas served by CenterPoint Energy or Oncor, have Powershare equipment installed, enroll in the Tesla Electric Drive plan, and opt in through the Tesla app. Once enrolled, vehicles would be able to contribute power during high-demand events, helping stabilize the grid.

Tesla noted that events may occur with little notice, so participants are encouraged to keep their Cybertrucks plugged in when at home and to manage their discharge limits based on personal needs. Compensation varies depending on the electricity plan, similar to how Powerwall owners in some regions have earned substantial credits by participating in Virtual Power Plant (VPP) programs.

Continue Reading

News

Samsung nears Tesla AI chip ramp with early approval at TX factory

This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.

Published

on

Tesla-Chips-HW3-1
Image used with permission for Teslarati. (Credit: Tom Cross)

Samsung has received temporary approval to begin limited operations at its semiconductor plant in Taylor, Texas.

This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.

Samsung clears early operations hurdle

As noted in a report from Korea JoongAng Daily, Samsung Electronics has secured temporary certificates of occupancy (TCOs) for a portion of its semiconductor facility in Taylor. This should allow the facility to start operations ahead of full completion later this year.

City officials confirmed that approximately 88,000 square feet of Samsung’s Fab 1 building has received temporary approval, with additional areas expected to follow. The overall timeline for permitting the remaining sections has not yet been finalized.

Advertisement

Samsung’s Taylor facility is expected to manufacture Tesla’s AI5 chips once mass production begins in the second half of the year. The facility is also expected to produce Tesla’s upcoming AI6 chips. 

Tesla CEO Elon Musk recently stated that the design for AI5 is nearly complete, and the development of AI6 is already underway. Musk has previously outlined an aggressive roadmap targeting nine-month design cycles for successive generations of its AI chips.

Samsung’s U.S. expansion

Construction at the Taylor site remains on schedule. Reports indicate Samsung plans to begin testing extreme ultraviolet (EUV) lithography equipment next month, a critical step for producing advanced 2-nanometer semiconductors.

Samsung is expected to complete 6 million square feet of floor space at the site by the end of this year, with an additional 1 million square feet planned by 2028. The full campus spans more than 1,200 acres.

Advertisement

Beyond Tesla, Samsung Foundry is also pursuing additional U.S. customers as demand for AI and high-performance computing chips accelerates. Company executives have stated that Samsung is looking to achieve more than 130% growth in 2-nanometer chip orders this year.

One of Samsung’s biggest rivals, TSMC, is also looking to expand its footprint in the United States, with reports suggesting that the company is considering expanding its Arizona facility to as many as 11 total plants. TSMC is also expected to produce Tesla’s AI5 chips. 

Advertisement
Continue Reading