Connect with us

News

SpaceX’s upgraded Starship completes second Raptor engine test in ~24 hours

SpaceX has fired up Starship SN15 for the second time in ~24 hours. (NASASpaceflight.com)

Published

on

SpaceX Starship prototype SN15 has completed a second ‘static fire’ test of its Raptor engines in the last 24 hours, hopefully setting up the rocket for a launch and landing attempt on Thursday or Friday.

While Monday’s test was a total success, it’s unclear if April 27th’s static fire went according to plan. Notably, it was much shorter than the Monday engine test and involved either one or two – but not all three – of Starship SN15’s Raptor engines. Historically, unusually brief static fires (~2-3 seconds) aren’t unprecedented, but they’ve generally been part of a process of troubleshooting after a prototype runs into technical issues during earlier testing.

According to Musk, SpaceX also moved to reigniting all three sea level Raptors for landing burns from Starship SN10 onwards, meaning that an intentional two-engine SN15 static fire is either a reversion to earlier two-engine landing burns or a sign of a static fire abort or engine ignition failure. If SpaceX needs to perform another test, particularly if one or more Raptors need to be replaced, Starship SN15’s launch will likely slip into early May. Stay tuned for updates.

SpaceX CEO Elon Musk says that the next Starship launch could happen “later this week” after the company’s first ‘upgraded’ prototype aced a three-engine static fire test on the first try.

While substantially delayed from optimistic initial targets just a week or two after the rocket rolled from factory to launch pad, upgraded Starship prototype serial number 15 (SN15) – outfitted with “hundreds of improvements” – fired up its three Raptor engines for a few seconds around 5pm CDT on Monday, April 26th. Also upgraded, the rocket’s engines seemed to perform nominally and SpaceX ultimately closed out the evening’s testing a few hours early.

Advertisement
-->

Around the same time as SN15’s first static fire attempt was wrapping up, SpaceX distributed safety notices to Boca Chica Village residents, indicating that a second static fire test may be planned on Tuesday. Musk didn’t mention plans for a second static fire, but he did imply that the first test was completed successfully enough to enable Starship SN15 to launch just a few days from now.

Like four other “high-altitude” flight tests before it, Starship SN15 is expected to target a similar ~10-12 kilometer (6-8 mi) apogee and once again attempt to perform a complete ascent, controlled bellyflop, landing flip maneuver, and soft touchdown. Between December 2020 and April 2021, Starships SN8 through SN11 tried and failed to survive that challenge intact, though prototype SN10 did manage to survive for around ten minutes on the ground before its still-hard landing led to an explosion.

All four failures ultimately had different causes. Starship SN8 lost fuel tank pressure, starving its Raptors and causing a near-total loss of thrust seconds before touchdown. One of SN9’s Raptors failed to ignite for a landing burn, triggering an even more aggressive impact with the ground. Starship SN10 landed in one piece but its lone landing engine underperformed when it began to ingest helium ullage gas – a quick-fix implemented after SN8’s pressurization issue. SN11 exploded almost immediately after attempting to ignite its three engines for landing, failing even earlier than its predecessors.

All four flight tests saw each respective Starship prototypes narrowly miss a fully successful and survivable landing, providing SpaceX a great deal of data and direct experience to improve the rocket’s design and operations with. Two of the four failures – SN9 and SN11 – appear to have been the fault of one or more of Starship’s three Raptor engines. Beginning with Starship SN15, SpaceX has moved to an upgraded iteration of the next-generation engine, raising hopes that whatever changes the company has implemented will substantially improve reliability and thus the odds of a successful high-altitude launch and landing test.

As of April 26th and in spite of one or two weeks of delays, the fact that Starship SN15 managed to complete a three-Raptor static fire test on its first true attempt is a great sign that the rocket’s many “improvements” may already be paying dividends. A launch “later this week” would make the effects of those improvements even harder to deny. A successful launch and landing in the next few days would all but guarantee that SpaceX’s process of iterative development is working like a charm. Regardless of whether SN15 survives its first flight, Starship SN16 will likely be ready to take over a matter of days later.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla hints at Starlink integration with recent patent

“By employing polymer blends, some examples enable RF transmission from all the modules to satellites and other communication devices both inside and outside the vehicle.”

Published

on

Credit: Grok

Tesla hinted at a potential Starlink internet terminal integration within its vehicles in a recent patent, which describes a vehicle roof assembly with integrated radio frequency (RF) transparency.

The patent, which is Pub. No U.S. 2025/0368267 describes a new vehicle roof that is made of RF-transparent polymer materials, allowing and “facilitating clear communication with external devices and satellites.”

Tesla believes that a new vehicle roof design, comprised of different materials than the standard metallic or glass elements used in cars today, would allow the company to integrate modern vehicular technologies, “particularly those requiring radio frequency transmission and reception.

Instead of glass or metallic materials, Tesla says vehicles may benefit from high-strength polymer blends, such as Polycarbonate, Acrylonitrile Butadiene Styrene, or Acrylonitrile Styrene Acrylate.

These materials still provide ideal strength metrics for crashworthiness, stiffness for noise, vibration, and harshness control, and are compliant with head impact regulations.

They would also enable better performance with modern technologies, like internet terminals, which need an uninterrupted signal to satellites for maximum reception. Tesla writes in the patent:

“By employing polymer blends, some examples enable RF transmission from all the modules to satellites and other communication devices both inside and outside the vehicle.”

One of the challenges Tesla seems to be aware of with this type of roof design is the fact that it will still have to enable safety and keep that at the forefront of the design. As you can see in the illustration above, Tesla plans to use four layers to increase safety and rigidity, while also combating noise and vibration.

It notes in the patent that disclosed examples still meet the safety requirements outlined in the Federal Motor Vehicle Safety Standards (FMVSS).

Starlink integrated directly into Tesla vehicles would be a considerable advantage for owners. It would come with a handful of distinct advantages.

Initially, the inclusion of Starlink would completely eliminate cellular dead zones, something that is an issue, especially in rural areas. Starlink would provide connectivity in these remote regions and would ensure uninterrupted service during road trips and off-grid adventures.

It could also be a critical addition for Robotaxi, as it is crucial to have solid and reliable connectivity for remote monitoring and fleet management.

Starlink’s growing constellation, thanks to SpaceX’s routine and frequent launch schedule, will provide secure, stable, and reliable internet connectivity for Tesla vehicles.

SpaceX reaches incredible milestone with Starlink program

Although many owners have already mounted Starlink Mini dishes under their glass roofs for a similar experience, it may be integrated directly into Teslas in the coming years, either as an upgrade or a standard feature.

Continue Reading

News

Tesla supplements Holiday Update by sneaking in new Full Self-Driving version

It seems Tesla was waiting for the Hardware 4 rollout, as it wanted to also deploy a new Full Self-Driving version to those owners, as it appeared in the release notes for the Holiday Update last night.

Published

on

Credit: Tesla

Tesla has surprised some owners by sneaking in a new Full Self-Driving version with the wide release of the Holiday Update, which started rolling out to Hardware 4 owners on Friday night.

Tesla has issued a controlled and very slow release pattern with the Holiday Update, which rolls out with Software Version 2025.44.25.5.

For the past two weeks, as it has rolled out to Hardware 3 and older Tesla owners, the company has kept its deployment of the new Software Version relatively controlled.

It seems Tesla was waiting for the Hardware 4 rollout, as it wanted to also deploy a new Full Self-Driving version to those owners, as it appeared in the release notes for the Holiday Update last night.

Tesla Full Self-Driving v14.2.1.25 made its first appearance last night to Hardware 4 owners who are members of the Early Access Program (EAP). It appears to be a slight refinement from FSD v14.2.1, which has been out for a couple of weeks.

Many owners welcome the new FSD version, us included, because we’ve been less than impressed with v14.2.1. We have experienced some minor regressions with v14.2.1, especially with Speed Limit recognition, Speed Profile tinkering, and parking performance.

As it stands, Full Self-Driving is still particularly impressive, but Tesla is evidently having an issue with some of the adjustments, as it is still refining some of the performance aspects of the suite. This is expected and normal with some updates, as not all of them are an improvement in all areas; we routinely see some things backtrack every once in a while.

This new FSD version is likely to take care of those things, but it also includes all of the awesome Holiday Update features, which include:

  • Grok with Navigation Commands (Beta) – Grok will now add and edit destinations.
  • Tesla Photobooth – Take pictures inside your car using the cabin-facing camera
  • Dog Mode Live Activity – Check on your four-legged friend on your phone through periodic snapshots taken of the cabin
  • Dashcam Viewer Update – Includes new metrics, like steering wheel angle, speed, and more
  • Santa Mode – New graphics, trees, and a lock chime
  • Light Show Update – Addition of Jingle Rush light show
  • Custom Wraps and License Plates – Colorizer now allows you to customize your vehicle even further, with custom patterns, license plates, and tint
  • Navigation Improvements – Easier layout and setup
  • Supercharger Site Map – Starting at 18 pilot locations, a 3D view of the Supercharger you’re visiting will be available
  • Automatic Carpool Lane Routing – Navigation will utilize carpool lanes if enabled
  • Phone Left Behind Chime – Your car will now tell you if you left a phone inside
  • Charge Limit Per Location – Set a charge limit for each location
  • ISS Docking Simulator –  New game
  • Additional Improvements – Turn off wireless charging pad, Spotify improvements, Rainbow Rave Cave, Lock Sound TRON addition

Tesla also added two other things that were undocumented, like Charging Passport and information on USB drive storage to help with Dashcam.

Continue Reading

Cybertruck

Tesla updates Cybertruck owners about key Powershare feature

Published

on

Credit: Tesla

Tesla is updating Cybertruck owners on its timeline of a massive feature that has yet to ship: Powershare with Powerwall.

Powershare is a bidirectional charging feature exclusive to Cybertruck, which allows the vehicle’s battery to act as a portable power source for homes, appliances, tools, other EVs, and more. It was announced in late 2023 as part of Tesla’s push into vehicle-to-everything energy sharing, and acting as a giant portable charger is the main advantage, as it can provide backup power during outages.

Cybertruck’s Powershare system supports both vehicle-to-load (V2L) and vehicle-to-home (V2H), making it flexible and well-rounded for a variety of applications.

However, even though the feature was promised with Cybertruck, it has yet to be shipped to vehicles. Tesla communicated with owners through email recently regarding Powershare with Powerwall, which essentially has the pickup act as an extended battery.

Powerwall discharge would be prioritized before tapping into the truck’s larger pack.

However, Tesla is still working on getting the feature out to owners, an email said:

“We’re writing to let you know that the Powershare with Powerwall feature is still in development and is now scheduled for release in mid-2026. 

This new release date gives us additional time to design and test this feature, ensuring its ability to communicate and optimize energy sharing between your vehicle and many configurations and generations of Powerwall. We are also using this time to develop additional Powershare features that will help us continue to accelerate the world’s transition to sustainable energy.”

Owners have expressed some real disappointment in Tesla’s continuous delays in releasing the feature, as it was expected to be released by late 2024, but now has been pushed back several times to mid-2026, according to the email.

Foundation Series Cybertruck buyers paid extra, expecting the feature to be rolled out with their vehicle upon pickup.

Cybertruck’s Lead Engineer, Wes Morrill, even commented on the holdup:

He said that “it turned out to be much harder than anticipated to make powershare work seamlessly with existing Powerwalls through existing wall connectors. Two grid-forming devices need to negotiate who will form and who will follow, depending on the state of charge of each, and they need to do this without a network and through multiple generations of hardware, and test and validate this process through rigorous certifications to ensure grid safety.”

It’s nice to see the transparency, but it is justified for some Cybertruck owners to feel like they’ve been bait-and-switched.

Continue Reading