News
SpaceX wiggles Starhopper’s Raptor engine, tests parts ahead of hover test debut
On the evening of July 12th, SpaceX technicians put Starhopper’s freshly-installed Raptor – serial number 06 (SN06) – through a simple but decidedly entertaining test, effectively wiggling the engine in circles.
Designed to verify that Raptor’s thrust vectoring capabilities are in order and ensure that Starhopper and the engine are properly communicating, the wiggle test is a small but critical part of pre-flight acceptance and a good indicator that the low-fidelity Starship prototype is nearing its first hover test(s). Roughly 48 hours after a successful series of wiggles, Starhopper and Raptor proceeded into the next stage of pre-flight acceptance, likely the final more step before a tethered static fire.
Routine for all Falcon rockets, SpaceX’s exceptionally rigorous practice of static firing all hardware at least once (and often several times) before launch has unsurprisingly held firm as the company proceeds towards integrated Starhopper and Starship flight tests. Despite the fact that Raptor SN06 completed a static fire as recently July 10th, SpaceX will very likely put Starhopper and its newly-installed Raptor through yet another pre-flight static fire, perhaps its fourth or fifth test this month.
Although it would undoubtedly be easier, cheaper, and faster to skip that post-delivery static fire, it will simultaneously lower the risk of Raptor failing mid-flight and verify that Starhopper itself is healthy and ready for untethered hovering. Although SpaceX could likely live without Starhopper in the event that it’s lost during flight-testing, any failure capable of destroying the vehicle itself is at least as capable of severely damaging or completely destroying the spartan but still expansive test and launch facilities the company built over the course of several months.

Would you like some testing with your testing?
Follow July 12th’s nighttime Raptor wiggle test, July 13th was mainly quiet and filled with inspections of Starhopper, Raptor, and other various work. The day after, however, SpaceX proceeded through several hours of propellant loading, ending with what looked like less energetic versions of the Raptor preburner ignition tests Starhopper previously performed with Raptor SN02.
In a staged-combustion engine like Raptor, getting from the supercool liquid oxygen and methane propellant to 200+ tons of thrust is quite literally staged, meaning that the ignition doesn’t happen all at once. Rather, the preburners – essentially their own, unique combustion chambers – ignite an oxygen- or methane-rich mixture, the burning of which produces the gas and pressure that powers the turbines that bring fuel into the main combustion chamber. That fuel then ignites, producing thrust as they exit the engine’s bell-shaped nozzle.


Although the fireworks are so subtle that they are easily missed, the conditions inside the preburner – hidden away from view – are actually far more intense than the iconic blue, purple, and pink flame that exists Raptor’s nozzle. This is because the preburners have to nurture the conditions necessary for the pumps they power to fuel the main combustion chamber. Much like hot water will cool while traveling through pipes, the superheated gaseous propellant that Raptor ignites to produce thrust will also cool (and thus lose pressure) as it travels from Raptor’s preburner to the main combustion chamber.
Thus, if the head pressure produced in the preburners is too low, Raptor’s thrust will be (roughly speaking) proportionally limited at best. At worst, low pressure in the preburners can completely prevent Raptor from starting and running stably and can even trigger a “hard start” or shutdown that could damage or destroy the engine. As such, to preburners fundamentally have to operate at higher chamber pressures (and thus higher temperatures) than the main combustion chamber (the big firey bit at the end). According to Elon Musk, Raptor’s oxygen preburner has the worst of it, operating at pressures as high or higher than 800 bar (11,600 psi, 80 megapascals).
Coincidentally, this is roughly equivalent to the pressure at the bottom of the Pacific Ocean.

In short, preburner testing is no less critical than full-on static fire testing with an engine like Raptor. July 14th’s test was also made doubly efficient due to the fact that preburner testing requires liquid propellant, which effectively makes the whole test a wet dress rehearsal (WDR) even before any engine ignition or partial ignition is involved. Per SpaceX moving from propellant loading to preburner/turbine testing, Starhopper is almost certainly healthy and operating as expected, an excellent sign that the ungainly vessel may be ready for a static fire of Raptor as early as 2pm CT, July 15th.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
New details emerge on The Boring Company’s Universal tunnel plans
The materials outline staffing, construction timelines, tunnel configuration, and operational details that were not previously public.
Newly released bidding documents have shed light on how Elon Musk’s Boring Company plans to connect Universal Orlando Resort’s north campus to Universal Epic Universe.
The materials outline staffing, construction timelines, tunnel configuration, and operational details that were not previously public about the planned Loop system.
The Shingle Creek Transit & Utility Community Development District voted Feb. 11 to begin contract negotiations with The Boring Company after ranking it the top bidder for the Universal Orlando transport project. Now, evaluation documents obtained by local news media reveal how the company intends to execute the project, according to Attraction Insight.
The proposal describes a twin-tunnel configuration, with one tunnel in each direction. It also noted that permitting, design, and construction could take roughly a year and a half once approvals are secured. The company indicated it could deploy multiple tunnel boring machines and install temporary support infrastructure, including muck storage pits and stormwater systems, during construction.
Bid documents list eight internal specialists assigned to the project, including tunnel engineers, structural engineers, and tunnel boring machine experts. Six subcontractors would handle fire protection, communications, soil treatment, and concrete work.
The company stated it “has the necessary internally produced tunneling equipment and personnel immediately available to complete this project for the district as quickly as permits and approvals can be obtained.”
Operationally, the system would mirror the company’s Las Vegas Loop model, using Tesla vehicles to provide point-to-point transport rather than fixed-route buses. The proposal frames the concept as “on-demand, express transportation,” with vehicles dispatched as needed and capacity adjustable in real time.
Stations could be built underground or above ground with ramp access into tunnels. The documents also referenced potential future integration of a configurable Robovan for passengers and cargo, though capacity projections for the Orlando tunnels have not yet been disclosed.
The proposal states that the Loop can integrate “easily into environmentally sensitive areas,” but it does not provide detailed mitigation plans for Central Florida’s high water table and limestone geology, which is susceptible to sinkholes. The company has stated that it intends to hire an Orlando-based geotechnical firm to evaluate soil conditions.
News
Tesla Giga Berlin dispute against IG Metall union leads to investigation
As per a report from rbb24, police seized a laptop belonging to an IG Metall member at Tesla Giga Berlin on Tuesday afternoon.
German authorities have opened an investigation into an IG Metall union representative following allegations that a confidential works council meeting at Tesla’s Gigafactory Berlin was secretly recorded. The probe follows a criminal complaint filed by Tesla management last week.
As per a report from rbb24, police seized a laptop belonging to an IG Metall member at Tesla Giga Berlin on Tuesday afternoon. Prosecutors in Frankfurt (Oder) confirmed that an investigation is underway into a possible unauthorized audio recording of an internal works council meeting.
Under German law, recording a non-public meeting without consent may constitute a criminal offense.
Tesla stated that Gigafactory Berlin employees alerted management after allegedly discovering that an external union representative, who was attending the event as a guest, had recorded the session. Plant manager André Thierig stated in a post on X that the representative was “caught in action,” prompting the company to contact police and file a criminal complaint.
The seized device is now part of the investigation, and authorities will determine whether any unlawful recording had indeed occurred.
IG Metall has denied the accusation. In comments to German media, representatives rejected Tesla’s claim and described the electric vehicle maker’s allegation as an election campaign tactic ahead of upcoming works council elections.
The election at Tesla’s Grünheide plant is scheduled for March 2–4, 2026, with about 11,000 employees being eligible to vote. Regular works council elections in Germany are held every four years between March and May.
The incident comes amid tensions between Tesla and organized labor in Germany. While works councils operate independently from unions, IG Metall has been active at the plant and has previously criticized Tesla’s labor practices. Authorities, for their part, have not yet announced whether charges will be filed, though the investigation remains ongoing.
News
Tesla rolls out xAI’s Grok to vehicles across Europe
The initial rollout includes the United Kingdom, Ireland, Germany, Switzerland, Austria, Italy, France, Portugal, and Spain.
Tesla is rolling out Grok to vehicles in Europe. The feature will initially launch in nine European territories.
In a post on X, the official Tesla Europe, Middle East & Africa account confirmed that Grok is coming to Teslas in Europe. The initial rollout includes the United Kingdom, Ireland, Germany, Switzerland, Austria, Italy, France, Portugal, and Spain, and additional markets are expected to be added later.
Grok allows drivers to ask questions using real-time information and interact hands-free while driving. According to Tesla’s support documentation, Grok can also initiate navigation commands, enabling users to search for destinations, discover points of interest, and adjust routes without touching the touchscreen, as per the feature’s official webpage.
The system offers selectable personalities, ranging from “Storyteller” to “Unhinged,” and is activated either through the App Launcher or by pressing and holding the steering wheel’s microphone button.
Grok is currently available only on Model S, Model 3, Model X, Model Y, and Cybertruck vehicles equipped with an AMD infotainment processor. Vehicles must be running software version 2025.26 or later, with navigation command support requiring version 2025.44.25 or newer.
Drivers must also have Premium Connectivity or a stable Wi-Fi connection to use the feature. Tesla notes that Grok does not currently replace standard voice commands for vehicle controls such as climate or media adjustments.
The company has stated that Grok interactions are processed securely by xAI and are not linked to individual drivers or vehicles. Users do not need a Grok account or subscription to enable the feature at this time as well.