Connect with us

News

Tesla’s 4680 battery ramp may experience a “Death Valley” start, but it will be overcome: expert

Credit: @Gfilche/Twitter

Published

on

To state that Tesla’s future lies in the success or failure of the 4680 battery is not an understatement. Without 4680 cells, Tesla’s efforts to create an affordable car at a price point beneath the Model 3 would likely be for naught. But if the company succeeds in ramping the production of its 4680 cells, Tesla could very well pave the way for electric vehicles to become the dominant form of personal transportation in the decades to come. 

Getting there would not be easy. Tesla formally announced its 4680 battery project in September 2020, and since then, the company has been working hard to ramp the production of the next-generation cell. Tesla produced its one millionth 4680 cell in January. That’s a milestone on its own, but it does show that the company still has a long way to go before it can fully ramp its new battery. 

Industry researcher Benchmark Mineral Intelligence estimates that one million 4680 cells are enough for just about 1,200 Model Ys. Tesla intends to produce far more than that per week in Gigafactory Texas alone. 

Tesla’s 4680 cells are not designed like conventional batteries, and they are not made like traditional cells either. Tesla plans to use a new manufacturing technology called dry electrode coating, which was obtained from the company’s acquisition of Maxwell Technologies in 2019. Dry electrode manufacturing would allow Tesla to skip a conventional step in traditional battery production, which should lower costs significantly

While Tesla acquired the technology, the innovations involved in the mass-production of 4680 cells using dry electrode coating are a massive challenge. Elon Musk has noted that the factory equipment for the process alone “doesn’t exist,” so they still have to be made. 

Advertisement
-->

Shirley Meng, a University of Chicago professor who previously worked with Maxwell, noted that Tesla’s 4680 battery efforts could change the industry. She also emphasized that Tesla’s challenges in mass-producing the next-generation battery would be immense. “He (Elon Musk) is changing the way how battery manufacturing is done. It’s really, really difficult to manufacture at a speed and at scale,” she said. She also stated that Tesla may have to experience a “Death Valley” start to scaling up the dry electrode process for 4680 cells. 

She does, however, believe that Tesla would overcome these difficulties. 

Other experts and longtime followers of the company seem to agree on the difficulty involved in developing and ramping a new type of battery cell. Caspar Rawles, chief data officer at Benchmark Mineral Intelligence, noted that fine-tuning the production equipment for battery production alone is an extremely long process, and one that challenges even the industry’s veterans. “There’s a very long process of fine-tuning the equipment before you can get to volume production. Battery production is hard, even hard for experienced suppliers,” he said. 

This definitely seems to be the case with Panasonic. The Japanese tech conglomerate has been a longtime partner of Tesla, and it already operates Gigafactory Nevada with the EV maker. However, recent comments from Kazuo Tadanobu, the CEO of Panasonic’s energy division, revealed that even Panasonic had to take its time to develop its 4680 batteries. Tadanobu noted that Tesla has already deemed Panasonic’s 4680 cells viable for use, but mass production of the new batteries is still expected to start by the fiscal year ending in March 2024.  

Tesla’s 4680 cells are expected to be used in vehicles like the Tesla Semi, the Cybertruck, and the company’s flagship supercar, the new Roadster. The next-generation batteries are also expected to be utilized in Tesla’s next big project, the production of an affordable $25,000 electric car.  

Advertisement
-->

*Quotes courtesy of Reuters.

Don’t hesitate to contact us with news tips. Just send a message to simon@teslarati.com to give us a heads up.

Simon is an experienced automotive reporter with a passion for electric cars and clean energy. Fascinated by the world envisioned by Elon Musk, he hopes to make it to Mars (at least as a tourist) someday. For stories or tips--or even to just say a simple hello--send a message to his email, simon@teslarati.com or his handle on X, @ResidentSponge.

Advertisement
Comments

News

Nvidia CEO Jensen Huang explains difference between Tesla FSD and Alpamayo

“Tesla’s FSD stack is completely world-class,” the Nvidia CEO said.

Published

on

Credit: Grok Imagine

NVIDIA CEO Jensen Huang has offered high praise for Tesla’s Full Self-Driving (FSD) system during a Q&A at CES 2026, calling it “world-class” and “state-of-the-art” in design, training, and performance. 

More importantly, he also shared some insights about the key differences between FSD and Nvidia’s recently announced Alpamayo system. 

Jensen Huang’s praise for Tesla FSD

Nvidia made headlines at CES following its announcement of Alpamayo, which uses artificial intelligence to accelerate the development of autonomous driving solutions. Due to its focus on AI, many started speculating that Alpamayo would be a direct rival to FSD. This was somewhat addressed by Elon Musk, who predicted that “they will find that it’s easy to get to 99% and then super hard to solve the long tail of the distribution.”

During his Q&A, Nvidia CEO Jensen Huang was asked about the difference between FSD and Alpamayo. His response was extensive:

“Tesla’s FSD stack is completely world-class. They’ve been working on it for quite some time. It’s world-class not only in the number of miles it’s accumulated, but in the way it’s designed, the way they do training, data collection, curation, synthetic data generation, and all of their simulation technologies. 

Advertisement
-->

“Of course, the latest generation is end-to-end Full Self-Driving—meaning it’s one large model trained end to end. And so… Elon’s AD system is, in every way, 100% state-of-the-art. I’m really quite impressed by the technology. I have it, and I drive it in our house, and it works incredibly well,” the Nvidia CEO said. 

Nvidia’s platform approach vs Tesla’s integration

Huang also stated that Nvidia’s Alpamayo system was built around a fundamentally different philosophy from Tesla’s. Rather than developing self-driving cars itself, Nvidia supplies the full autonomous technology stack for other companies to use.

“Nvidia doesn’t build self-driving cars. We build the full stack so others can,” Huang said, explaining that Nvidia provides separate systems for training, simulation, and in-vehicle computing, all supported by shared software.

He added that customers can adopt as much or as little of the platform as they need, noting that Nvidia works across the industry, including with Tesla on training systems and companies like Waymo, XPeng, and Nuro on vehicle computing.

“So our system is really quite pervasive because we’re a technology platform provider. That’s the primary difference. There’s no question in our mind that, of the billion cars on the road today, in another 10 years’ time, hundreds of millions of them will have great autonomous capability. This is likely one of the largest, fastest-growing technology industries over the next decade.”

Advertisement
-->

He also emphasized Nvidia’s open approach, saying the company open-sources its models and helps partners train their own systems. “We’re not a self-driving car company. We’re enabling the autonomous industry,” Huang said.

Continue Reading

Elon Musk

Elon Musk confirms xAI’s purchase of five 380 MW natural gas turbines

The deal, which was confirmed by Musk on X, highlights xAI’s effort to aggressively scale its operations.

Published

on

Credit: xAI/X

xAI, Elon Musk’s artificial intelligence startup, has purchased five additional 380 MW natural gas turbines from South Korea’s Doosan Enerbility to power its growing supercomputer clusters. 

The deal, which was confirmed by Musk on X, highlights xAI’s effort to aggressively scale its operations.

xAI’s turbine deal details

News of xAI’s new turbines was shared on social media platform X, with user @SemiAnalysis_ stating that the turbines were produced by South Korea’s Doosan Enerbility. As noted in an Asian Business Daily report, Doosan Enerbility announced last October that it signed a contract to supply two 380 MW gas turbines for a major U.S. tech company. Doosan later noted in December that it secured an order for three more 380 MW gas turbines.

As per the X user, the gas turbines would power an additional 600,000+ GB200 NVL72 equivalent size cluster. This should make xAI’s facilities among the largest in the world. In a reply, Elon Musk confirmed that xAI did purchase the turbines. “True,” Musk wrote in a post on X. 

xAI’s ambitions 

Recent reports have indicated that xAI closed an upsized $20 billion Series E funding round, exceeding the initial $15 billion target to fuel rapid infrastructure scaling and AI product development. The funding, as per the AI startup, “will accelerate our world-leading infrastructure buildout, enable the rapid development and deployment of transformative AI products.”

Advertisement
-->

The company also teased the rollout of its upcoming frontier AI model. “Looking ahead, Grok 5 is currently in training, and we are focused on launching innovative new consumer and enterprise products that harness the power of Grok, Colossus, and 𝕏 to transform how we live, work, and play,” xAI wrote in a post on its website. 

Continue Reading

Elon Musk

Elon Musk’s xAI closes upsized $20B Series E funding round

xAI announced the investment round in a post on its official website. 

Published

on

xAI-supercomputer-memphis-environment-pushback
Credit: xAI

xAI has closed an upsized $20 billion Series E funding round, exceeding the initial $15 billion target to fuel rapid infrastructure scaling and AI product development. 

xAI announced the investment round in a post on its official website. 

A $20 billion Series E round

As noted by the artificial intelligence startup in its post, the Series E funding round attracted a diverse group of investors, including Valor Equity Partners, Stepstone Group, Fidelity Management & Research Company, Qatar Investment Authority, MGX, and Baron Capital Group, among others. 

Strategic partners NVIDIA and Cisco Investments also continued support for building the world’s largest GPU clusters.

As xAI stated, “This financing will accelerate our world-leading infrastructure buildout, enable the rapid development and deployment of transformative AI products reaching billions of users, and fuel groundbreaking research advancing xAI’s core mission: Understanding the Universe.”

Advertisement
-->

xAI’s core mission

Th Series E funding builds on xAI’s previous rounds, powering Grok advancements and massive compute expansions like the Memphis supercluster. The upsized demand reflects growing recognition of xAI’s potential in frontier AI.

xAI also highlighted several of its breakthroughs in 2025, from the buildout of Colossus I and II, which ended with over 1 million H100 GPU equivalents, and the rollout of the Grok 4 Series, Grok Voice, and Grok Imagine, among others. The company also confirmed that work is already underway to train the flagship large language model’s next iteration, Grok 5. 

“Looking ahead, Grok 5 is currently in training, and we are focused on launching innovative new consumer and enterprise products that harness the power of Grok, Colossus, and 𝕏 to transform how we live, work, and play,” xAI wrote. 

Continue Reading