Connect with us

News

Tesla’s plan for added Cybercab safety measure revealed

Credit: Teslarati

Published

on

Tesla will reportedly use teleoperations as an extra safety measure when it first deploys its driverless taxi and ride-hailing service, according to an investor’s note from one firm this morning.

On Tuesday, following a meeting with Tesla’s Investor Relations Head Travis Axelrod, Deutsche Bank wrote in a note that the company expects to need teleoperations, at least at first, as an additional safety measure to back the Cybercab’s camera-based self-driving system. The Cybercab, which was unveiled during a Southern California event in October, doesn’t include a steering wheel or pedals, and is based on the company’s Supervised Full Self-Driving (FSD) software, utilizing only cameras and real-time driving scenarios to train its AI neural network to make driving decisions.

“Tesla believes it would be reasonable to assume some type of teleoperator would be needed at least initially for safety/redundancy purposes,” the firm wrote in a Monday note (via Reuters).

Tesla has not responded to Teslarati’s request to confirm the claim or provide additional details.

READ MORE ABOUT THE CYBERCAB: Tesla’s Elon Musk reveals why Cybercab, Cybertruck don’t equip company logos

Tesla Cybercab: fewer parts, autonomy from driving to charging

Teslarati was one of the first few to take a ride in the Cybercab at Tesla’s October 10 “We, Robot” event, which took place at a Warner Brothers studio in Burbank, California. You can get a close-up look at the two-seat Cybercab in our coverage of the event below.

Beyond touting the scalability of its FSD software, due to its utilization of a neural network model unlike other companies that are subject to geofencing and pre-mapping, Tesla has regularly highlighted the lower-cost cameras its products use as a major savings benefit compared to companies that use LiDAR and multiple redundant systems at once. While redundancy may be important to Tesla at first with the use of teleoperation, the company is looking long-term at a non-redundant camera-based system used in its other vehicles, which has already been gathering training data from real drivers over the years.

Earlier this month, Tesla’s Principal Mechanical Design Engineer Eric Earley said that the Cybercab has roughly half the parts of a Model 3, highlighting the massive cost-savings the company expects to gain from production of the autonomous vehicle.

Advertisement

“Two seats unlocks a lot of opportunity aerodynamically. It also means we cut the part count of Cybercab down by a substantial margin. We’re gonna be delivering a car that has roughly half the parts of Model 3 today,” Earley said. “It also means when you need to clean the car as a rideshare asset, you really don’t have to worry about navigating multiple doors, multiple seats. You really just have what looks like a bench seat, easy to clean automatically.”

Eventually, Tesla aims to produce two million Cybercabs per year, and in addition to being fully driverless, the company has also shared plans for a wireless charging system, and an autonomous cleaning robot, both of which are expected to allow the vehicle to be completely independent of human input, even beyond driving.

Tesla spotted testing Cybercab in Giga Texas premises

What are your thoughts? Let me know at zach@teslarati.com, find me on X at @zacharyvisconti, or send us tips at tips@teslarati.com.

Zach is a renewable energy reporter who has been covering electric vehicles since 2020. He grew up in Fremont, California, and he currently lives in Colorado. His work has appeared in the Chicago Tribune, KRON4 San Francisco, FOX31 Denver, InsideEVs, CleanTechnica, and many other publications. When he isn't covering Tesla or other EV companies, you can find him writing and performing music, drinking a good cup of coffee, or hanging out with his cats, Banks and Freddie. Reach out at zach@teslarati.com, find him on X at @zacharyvisconti, or send us tips at tips@teslarati.com.

Advertisement
Comments

News

Tesla Robotaxi ride-hailing without a Safety Monitor proves to be difficult

Published

on

Credit: Grok Imagine

Tesla Robotaxi ride-hailing without a Safety Monitor is proving to be a difficult task, according to some riders who made the journey to Austin to attempt to ride in one of its vehicles that has zero supervision.

Last week, Tesla officially removed Safety Monitors from some — not all — of its Robotaxi vehicles in Austin, Texas, answering skeptics who said the vehicles still needed supervision to operate safely and efficiently.

BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor

Tesla aimed to remove Safety Monitors before the end of 2025, and it did, but only to company employees. It made the move last week to open the rides to the public, just a couple of weeks late to its original goal, but the accomplishment was impressive, nonetheless.

However, the small number of Robotaxis that are operating without Safety Monitors has proven difficult to hail for a ride. David Moss, who has gained notoriety recently as the person who has traveled over 10,000 miles in his Tesla on Full Self-Driving v14 without any interventions, made it to Austin last week.

He has tried to get a ride in a Safety Monitor-less Robotaxi for the better part of four days, and after 38 attempts, he still has yet to grab one:

Tesla said last week that it was rolling out a controlled test of the Safety Monitor-less Robotaxis. Ashok Elluswamy, who heads the AI program at Tesla, confirmed that the company was “starting with a few unsupervised vehicles mixed in with the broader Robotaxi fleet with Safety Monitors,” and that “the ratio will increase over time.”

This is a good strategy that prioritizes safety and keeps the company’s controlled rollout at the forefront of the Robotaxi rollout.

However, it will be interesting to see how quickly the company can scale these completely monitor-less rides. It has proven to be extremely difficult to get one, but that is understandable considering only a handful of the cars in the entire Austin fleet are operating with no supervision within the vehicle.

Continue Reading

News

Tesla gives its biggest hint that Full Self-Driving in Europe is imminent

Published

on

Credit: BLKMDL3 | X

Tesla has given its biggest hint that Full Self-Driving in Europe is imminent, as a new feature seems to show that the company is preparing for frequent border crossings.

Tesla owner and influencer BLKMDL3, also known as Zack, recently took his Tesla to the border of California and Mexico at Tijuana, and at the international crossing, Full Self-Driving showed an interesting message: “Upcoming country border — FSD (Supervised) will become unavailable.”

Due to regulatory approvals, once a Tesla operating on Full Self-Driving enters a new country, it is required to comply with the laws and regulations that are applicable to that territory. Even if legal, it seems Tesla will shut off FSD temporarily, confirming it is in a location where operation is approved.

This is something that will be extremely important in Europe, as crossing borders there is like crossing states in the U.S.; it’s pretty frequent compared to life in America, Canada, and Mexico.

Tesla has been working to get FSD approved in Europe for several years, and it has been getting close to being able to offer it to owners on the continent. However, it is still working through a lot of the red tape that is necessary for European regulators to approve use of the system on their continent.

This feature seems to be one that would be extremely useful in Europe, considering the fact that crossing borders into other countries is much more frequent than here in the U.S., and would cater to an area where approvals would differ.

Tesla has been testing FSD in Spain, France, England, and other European countries, and plans to continue expanding this effort. European owners have been fighting for a very long time to utilize the functionality, but the red tape has been the biggest bottleneck in the process.

Tesla Europe builds momentum with expanding FSD demos and regional launches

Tesla operates Full Self-Driving in the United States, China, Canada, Mexico, Puerto Rico, Australia, New Zealand, and South Korea.

Continue Reading

Elon Musk

SpaceX Starship V3 gets launch date update from Elon Musk

The first flight of Starship Version 3 and its new Raptor V3 engines could happen as early as March.

Published

on

Credit: SpaceX/X

Elon Musk has announced that SpaceX’s next Starship launch, Flight 12, is expected in about six weeks. This suggests that the first flight of Starship Version 3 and its new Raptor V3 engines could happen as early as March.

In a post on X, Elon Musk stated that the next Starship launch is in six weeks. He accompanied his announcement with a photo that seemed to have been taken when Starship’s upper stage was just about to separate from the Super Heavy Booster. Musk did not state whether SpaceX will attempt to catch the Super Heavy Booster during the upcoming flight.

The upcoming flight will mark the debut of Starship V3. The upgraded design includes the new Raptor V3 engine, which is expected to have nearly twice the thrust of the original Raptor 1, at a fraction of the cost and with significantly reduced weight. The Starship V3 platform is also expected to be optimized for manufacturability. 

The Starship V3 Flight 12 launch timeline comes as SpaceX pursues an aggressive development cadence for the fully reusable launch system. Previous iterations of Starship have racked up a mixed but notable string of test flights, including multiple integrated flight tests in 2025.

Interestingly enough, SpaceX has teased an aggressive timeframe for Starship V3’s first flight. Way back in late November, SpaceX noted on X that it will be aiming to launch Starship V3’s maiden flight in the first quarter of 2026. This was despite setbacks like a structural anomaly on the first V3 booster during ground testing.

“Starship’s twelfth flight test remains targeted for the first quarter of 2026,” the company wrote in its post on X. 

Continue Reading