News
Tesla’s race to autonomy: No one said it would be easy
Need to type up a quick memo before work? Forgot to eat breakfast before driving to school? In just a few years, driving may be a more hands-off endeavor than ever before if companies like Tesla, Uber, Volvo, Alphabet, General Motors, or Ford have anything to do about it. You could be a passenger in your own self-driving car, weaving in and out of traffic with ease and parallel parking like a pro every time. It seems like most every company even tangentially related to cars is pouring money into the race for autonomy.
The freedom of self-driving cars is still heavily dependent on regulatory whim and technological availability, but some are setting demanding goals in an effort to finish first in that race. Tesla for example, plans to showcase its Full Self-Driving Capability by driving one of its fleet cars from California to New York, without human involvement, by the end of this year. But their competitors are moneyed, motivated and many.
The Self-Driving Battle Arena
For Uber, success in autonomous driving research could be a sweet distraction from the recent troubles of the company. Its self-driving program has been based in Pittsburgh, right next to Carnegie Mellon with its highly regarded robotics program since it began in 2015. Then-CEO Travis Kalanick was determined to stay on top of the industry. “It starts with understand that the world is going to go self-driving and autonomous,” Kalanick said in a 2016 interview with Business Insider. “So if that’s happening, what would happen if we weren’t a part of that future? If we weren’t part of the autonomy thing? Then the future passes us by basically, in a very expeditious and efficient way.”
Plagued by lawsuits, investigations, and subsequent executive upheaval that saw Kalanick’s resignation from the enterprise he founded, Uber is still one of the best places for researchers and engineers to work on their projects. The company has armies of vehicles across the country, vast datasets of information from the millions of miles its cars have covered through its ride-hailing branch, and the money to fund its engineers’ work.
This does not mean that Uber’s self-driving program has remained untouched. Waymo, the autonomous car division of Google’s parent company, Alphabet, is currently suing Uber over files allegedly by Anthony Levandowski when he moved from Waymo to Uber. According to Reuters, in recent court filings, Waymo has claimed that Uber knew of the stolen intellectual property and even conspired with Levandowski to use it. Uber denies the allegations and actually fired Levandowski on May 30, claiming he had not cooperated with their internal investigation– and probably hoping to win some goodwill from the judge who has already said Waymo had produced a convincing case.
It is unlikely the scandals will affect the decisions of most researchers to stay with the company. As Wired’s Aarian Marshall points out, the long timeline of building a safe autonomous car makes engineers less likely to leave at a moment’s notice in a period of executive instability. And the branch’s position in Pittsburgh rather than Silicon Valley means the roiling news is less sensationalized and the researchers less affected. The ride-sharing company’s failure to live up to certain promises, including backing one of Pittsburgh’s federal grant proposals or hiring from neighborhoods near its test tracks, have drawn ire from many local activists and politicians, as reported by the New York Times. Even so, it has helped the city break away from its steel past and into a high-tech future.
Meanwhile, Uber’s main competitor in the ride-sharing industry, Lyft, has been making strides to continue chipping away Uber’s monopoly in any field, including self-driving cars, as Uber deals with scandal after scandal. As reported by Recode, Lyft is steadily gaining ground on Uber in terms of the share of ride-hailing app downloads as its ratings in the IOS App Store rise and Uber’s falls. This recent shift in market share comes as Waymo and Lyft start a new partnership that will combine Waymo’s advanced technology with Lyft’s vast amounts of data on people, where and how they drive. “Lyft’s vision and commitment to improving the ways cities move with help Waymo’s self-driving technology reach more people, in more places,” a Waymo spokesperson told Wired. Extending Waymo’s dataset beyond the few cities, including Phoenix and Pittsburgh, allows the enterprise to collect the small details of average people’s driving habits much faster and accurately than its test drives around Silicon Valley will.
But despite Waymo’s eight years of self-driving research, it still has to play catch up to Uber in some regards. Waymo just started testing autonomous trucks earlier this month, while Uber first used a self-driving truck to deliver a shipment last August, advancing its technology quickly after it snatched up the self-driving truck startup Otto—founded by Anthony Levandowski after he left Waymo— in January of 2016. Yet, Waymo has the benefit of its parent company’s huge cash reserves and data.
Growing Pains
Tesla is moving its autonomous program forward at an increasingly demanding pace, trying to meet that goal of driving from Los Angeles to New York by the end of this year. It, like Uber, is going through some executive shakeup: after just six months with Tesla, Chris Lattner, Vice President of its Autopilot Software program, left the company after reported tensions with Elon Musk. Tesla explained that the former Apple engineer was not a “good fit.” It stands to mention that working under Musk is notoriously a high-pressure gig. According to LinkedIn Insights, the average tenure of a Tesla employee is only 2.2 years, while companies like General Motors keeps its employees for almost 9. But Lattner’s exit is just one example of many of talented Tesla self-driving engineers leaving the company or being poached by the competition, like Waymo.
While Autopilot can do many impressive things— change lanes, brake before obstacles, and generally act as a rational human driver— it is far from perfect. The program is still technically in “public beta” testing, and rated by the National Transportation Safety Board as a 2 out of 5 on its scale of autonomy.
The fatal crash of a Model S owner Joshua Brown in May 2016 serves as a good reminder that drivers are cautioned to pay attention and keep their hands on the wheel at all times while using Autopilot. Tesla’s driving-assist feature, at the time, could not distinguish the difference between the bright sky and the white truck. Tesla and Autopilot were cleared of responsibility by the NTSB because Brown was given several warnings to take back control of the wheel. But it is a poignant example that Autopilot does not function as a self-driving car and still requires a driver’s full attention. After the accident, Tesla was forced to start developing its own hardware for Autopilot. Mobileye, which previously supplied Tesla’s image processing chips, ended its partnership in a public spat with Musk.
According to Lattner’s public resume, the transition to its own hardware presented “many tough challenges” to the Tesla team. Musk commented to shareholders in June that Tesla is “almost there in terms of exceeding the ability” of the original hardware. All of Tesla’s vehicles in production, including the upcoming Model 3, have the capability to engage Autopilot (for a price) and the necessary hardware to enable full self-driving someday. Autopilot will continue using the camera-based system that Tesla swears by, even as most of the industry focuses on developing LiDAR technology based on light and lasers.
And while Tesla prefers to work mostly alone, the rest of the industry is also pairing up, making deals, partnerships, and contracts between manufacturers, data giants, and service teams. Musk is taking a move out of Steve Jobs’ playbook by vertically integrating everything within the business, from top-to-bottom. Waymo and Honda, Lyft and Waymo, Autoliv and Volvo, Hertz and Apple, Intel and Mobileye, Audi and NVIDIA, and almost every other combination you could think of. Predictions for when the first company will reach the finish line range from within a year to two decades from now. And even if the car is made, there is still the question of if cities and states will allow autonomous vehicles to drive on their streets. The technology is closer than ever, but for now, please keep your eyes on the road.
News
Tesla Cybercab spotted with interesting charging solution, stimulating discussion
The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.
Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.
The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.
But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:
🚨 Tesla Cybercab charging port is in the rear of the vehicle!
Here’s a great look at plugging it in!!
— TESLARATI (@Teslarati) January 29, 2026
The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.
Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.
However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.
Wireless for Operation, Wired for Downtime
It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.
The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.
Tesla wireless charging patent revealed ahead of Robotaxi unveiling event
However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.
In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.
Induction Charging Challenges
Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.
While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.
Production Timing and Potential Challenges
With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.
It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.
In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.
News
Tesla confirms that it finally solved its 4680 battery’s dry cathode process
The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years.
The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Dry cathode 4680 cells
In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.
The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”
Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.
4680 packs for Model Y
Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla:
“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”
The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.
Elon Musk
Tesla Giga Texas to feature massive Optimus V4 production line
This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.
Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.
Optimus 4 production
In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas.
This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4.
“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated.
How big Optimus could become
During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world.
“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP.
“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated.


